Suppr超能文献

乙型流感病毒M2质子通道(BM2)的激活

Activation of the influenza B M2 proton channel (BM2).

作者信息

Yue Zhi, Wu Jiangbo, Teng Da, Wang Zhi, Voth Gregory A

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

bioRxiv. 2024 Jul 26:2024.07.26.605324. doi: 10.1101/2024.07.26.605324.

Abstract

Influenza B viruses have co-circulated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we perform the membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant to explore its pH-dependent conformational switch. Simulations capture the activation as the first histidine (His19) protonates and reveal the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and pre-protonated His27. Crucially, we provide an atomic-level understanding of the symmetric proton conduction by identifying pre-activating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible anti-flu drug design efforts.

摘要

乙型流感病毒在大多数季节性流感流行期间共同传播,由于其快速变异、新出现的耐药性以及对脆弱人群的严重影响,可导致显著的人类发病和死亡。乙型流感M2质子通道(BM2)在病毒复制中起重要作用,但其对称质子传导背后的机制以及第二个组氨酸(His27)簇的参与情况仍不清楚。在此,我们对野生型BM2和关键的H27A突变体进行了膜支持的连续恒定pH分子动力学模拟,以探索其pH依赖性构象转换。模拟捕捉到第一个组氨酸(His19)质子化时的激活过程,并揭示与AM2相比,在较低pH值下的转变是His19与预质子化的His27之间静电排斥的结果。至关重要的是,我们通过识别C末端部分的预激活通道水合作用,提供了对对称质子传导的原子水平理解。这项研究推进了我们对BM2功能的理解,并为进一步对明确质子传输过程进行化学反应建模以及可能的抗流感药物设计工作奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b78c/11291123/5bcf9ae1c46e/nihpp-2024.07.26.605324v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验