Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Paris, France.
Laboratoire de Physique de la Matière Condensée, CNRS-École Polytechnique, Palaiseau Cédex, France.
Nat Mater. 2019 Nov;18(11):1222-1227. doi: 10.1038/s41563-019-0445-x. Epub 2019 Aug 5.
The aqueous electrocatalytic reduction of CO into alcohol and hydrocarbon fuels presents a sustainable route towards energy-rich chemical feedstocks. Cu is the only material able to catalyse the substantial formation of multicarbon products (C/C), but competing proton reduction to hydrogen is an ever-present drain on selectivity. Here, a superhydrophobic surface was generated by 1-octadecanethiol treatment of hierarchically structured Cu dendrites, inspired by the structure of gas-trapping cuticles on subaquatic spiders. The hydrophobic electrode attained a 56% Faradaic efficiency for ethylene and 17% for ethanol production at neutral pH, compared to 9% and 4% on a hydrophilic, wettable equivalent. These observations are assigned to trapped gases at the hydrophobic Cu surface, which increase the concentration of CO at the electrode-solution interface and consequently increase CO reduction selectivity. Hydrophobicity is thus proposed as a governing factor in CO reduction selectivity and can help explain trends seen on previously reported electrocatalysts.
将 CO 水相电催化还原为醇和碳氢燃料为富含能量的化学原料提供了一条可持续的途径。Cu 是唯一能够催化多碳产物(C/C)大量形成的材料,但竞争的质子还原为氢是选择性的一个永远存在的损耗。在这里,受水下蜘蛛气体陷阱表皮结构的启发,通过 1-十八硫醇处理分级结构的 Cu 树枝状晶体,生成了超疏水表面。在中性 pH 条件下,疏水性电极对乙烯的法拉第效率达到 56%,对乙醇的法拉第效率达到 17%,而亲水、可润湿的对应电极的相应值分别为 9%和 4%。这些观察结果归因于疏水性 Cu 表面的截留气体,这增加了电极-溶液界面处 CO 的浓度,从而提高了 CO 还原的选择性。因此,疏水性被认为是 CO 还原选择性的控制因素,并有助于解释之前报道的电催化剂中观察到的趋势。