Department of Materials Science and Engineering, University of California, Berkeley, CA 94720.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10560-10565. doi: 10.1073/pnas.1711493114. Epub 2017 Sep 18.
Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C-C products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and -propanol are the major C-C products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and C-C faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C-C hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C-C current density 10 mA/cm (at -0.75 V), rendering it attractive for solar-to-fuel applications. Tafel analysis suggests reductive CO coupling as a rate determining step for C products, while -propanol (C) production seems to have a discrete pathway.
将二氧化碳直接转化为多碳产物仍然是电化学 CO 还原中的一个重大挑战。各种形式的氧化铜已被证明是电催化剂,但仍需要较大的过电势。在这里,我们表明,铜纳米颗粒 (NP) 的集合体能够在低过电势下选择性地形成 C-C 产物。在电解过程中,密集排列的 Cu NP 集合体经历结构转变,形成电催化活性的立方颗粒,其中夹杂着较小的纳米颗粒。乙烯、乙醇和 1-丙醇是主要的 C-C 产物,起始电位为-0.53 V(相对于可逆氢电极,RHE),仅在-0.75 V 时 C-C 法拉第效率(FE)达到 50%。因此,该催化剂在中性 pH 水介质中以相当低的过电势表现出 C-C 碳氢化合物和含氧化合物的选择性生成。此外,这种方法为从 CO 中实现多碳产物的形成提供了新的机会,而大多数努力都集中在使用氧化铜基材料上。通过在-0.75 V 时具有 10 mA/cm 的稳定 C-C 电流密度 10 h 的稳定运行,证明了其具有稳健的催化性能,这使其在太阳能到燃料的应用中具有吸引力。塔菲尔分析表明,还原 CO 偶联是 C 产物的速率决定步骤,而 1-丙醇(C)的生成似乎有一个离散的途径。