Suppr超能文献

催化剂层中的小颗粒间距形成了一个广阔的三相界面,以提高CO到C转化的电流密度。

Small Interparticle Spacing in Catalyst Layers Forms an Expansive Triple-Phase Interface for Boosting the Current Density of CO-to-C Conversion.

作者信息

Inoue Asato, Nakasone Sora, Yoshida Ryotaro, Nakahata Shoko, Harada Takashi, Nakanishi Shuji, Kamiya Kazuhide

机构信息

Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, The University of Osaka, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.

Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), The University of Osaka, Suita, Osaka, 565-0871, Japan.

出版信息

Small. 2025 Jun;21(23):e2500693. doi: 10.1002/smll.202500693. Epub 2025 Apr 18.

Abstract

Achieving both high current density and high selectivity for high-value products is crucial for the widespread implementation of CO electrolysis. Toward high-current-density electrolysis, it is crucial to design a triple-phase interface, where the catalyst, electrolyte, and gaseous substrate intersect, serving as the active reaction site for CO electrolysis. In this study, aims to establish design principles for the triple-phase interface composed of copper nanoparticles (CuNPs) to achieve ultra-high-current-density electrolysis of gaseous CO into multicarbon (C) products. The C formation activity of electrodes carrying various CuNPs is systematically evaluated under high-current-density (>1 A cm) electrolysis conditions. By analyzing the correlations between the electrochemical performances and the physicochemical properties of the catalysts and electrodes, it is identified that the average size of interparticle spacing in the catalyst layer is correlated with the maximum partial current density for C production (j). Smaller interparticle spacings are found to enhance j by suppressing the excessive electrolyte penetration into the catalyst layer and forming an expansive triple-phase interface. Based on these insights, the optimized electrode, with an average interparticle spacing of 59.4 nm, exhibited a record j of 2.00 A cm with a faradaic efficiency of 80.1%.

摘要

实现高电流密度和对高价值产物的高选择性对于CO电解的广泛应用至关重要。对于高电流密度电解而言,设计一个三相界面至关重要,在该界面处催化剂、电解质和气态底物相交,作为CO电解的活性反应位点。在本研究中,旨在建立由铜纳米颗粒(CuNP)组成的三相界面的设计原则,以实现将气态CO超高电流密度电解为多碳(C)产物。在高电流密度(>1 A cm)电解条件下,系统地评估了负载各种CuNP的电极的C形成活性。通过分析电化学性能与催化剂和电极的物理化学性质之间的相关性,确定催化剂层中颗粒间间距的平均尺寸与C生成的最大分电流密度(j)相关。发现较小的颗粒间间距通过抑制过量电解质渗透到催化剂层并形成扩展的三相界面来提高j。基于这些见解,平均颗粒间间距为59.4 nm的优化电极表现出创纪录的j为2.00 A cm,法拉第效率为80.1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3db0/12160676/92daf493ba3c/SMLL-21-2500693-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验