Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.
Multiple Sclerosis Clinical Care and Research Center, Department of Neurosciences, Federico II University, Naples, Italy.
Ann Neurol. 2019 Nov;86(5):704-713. doi: 10.1002/ana.25571. Epub 2019 Aug 22.
Spinal cord atrophy is a clinically relevant feature of multiple sclerosis (MS), but longitudinal assessments on magnetic resonance imaging using segmentation-based methods suffer from measurement variability, especially in multicenter studies. We compared the generalized boundary shift integral (GBSI), a registration-based method, with a standard segmentation-based method.
Baseline and 1-year spinal cord 3-dimensional T1-weighted images (1mm isotropic) were obtained from 282 patients (52 clinically isolated syndrome [CIS], 196 relapsing-remitting MS [RRMS], 34 progressive MS [PMS]), and 82 controls from 8 MAGNIMS (Magnetic Resonance Imaging in Multiple Sclerosis) sites on multimanufacturer and multi-field-strength scans. Spinal Cord Toolbox was used for C2-5 segmentation and cross-sectional area (CSA) calculation. After cord straightening and registration, GBSI measured atrophy based on the probabilistic boundary-shift region of interest. CSA and GBSI percentage annual volume change was calculated.
GBSI provided similar rates of atrophy, but reduced measurement variability compared to CSA in all MS subtypes (CIS: -0.95 ± 2.11% vs -1.19 ± 3.67%; RRMS: -1.74 ± 2.57% vs -1.74 ± 4.02%; PMS: -2.29 ± 2.40% vs -1.29 ± 3.20%) and healthy controls (0.02 ± 2.39% vs -0.56 ± 3.77%). GBSI performed better than CSA in differentiating healthy controls from CIS (area under the curve [AUC] = 0.66 vs 0.53; p = 0.03), RRMS (AUC = 0.73 vs 0.59; p < 0.001), PMS (AUC = 0.77 vs 0.53; p < 0.001), and patients with disability progression from patients without progression (AUC = 0.59 vs 0.50; p = 0.04). Sample size to detect 60% treatment effect on spinal cord atrophy over 1 year was lower for GBSI than CSA (CIS: 106 vs 830; RRMS: 95 vs 335; PMS: 44 vs 215; power = 80%; alpha = 5%).
The registration-based method (GBSI) allowed better separation between MS patients and healthy controls and improved statistical power, when compared with a conventional segmentation-based method (CSA), although it is still far from perfect. ANN NEUROL 2019 ANN NEUROL 2019;86:704-713.
脊髓萎缩是多发性硬化症(MS)的一个临床相关特征,但使用基于分割的方法进行磁共振成像(MRI)的纵向评估存在测量变异性,尤其是在多中心研究中。我们比较了基于广义边界位移积分(GBSI)的方法与基于标准分割的方法。
共纳入 282 例患者(52 例临床孤立综合征 [CIS],196 例复发缓解型 MS [RRMS],34 例进展型 MS [PMS])和 82 例来自 8 个 MAGNIMS(多发性硬化症磁共振成像)站点的对照者,他们的基线和 1 年的脊髓 3 维 T1 加权图像(1mm 各向同性)在多制造商和多场强扫描上获得。使用脊髓工具箱进行 C2-5 分割和横截面积(CSA)计算。在拉直脊髓和注册后,GBSI 根据概率边界位移感兴趣区测量萎缩。计算 CSA 和 GBSI 每年的体积变化百分比。
在所有 MS 亚型(CIS:-0.95±2.11%对-1.19±3.67%;RRMS:-1.74±2.57%对-1.74±4.02%;PMS:-2.29±2.40%对-1.29±3.20%)和健康对照者(0.02±2.39%对-0.56±3.77%)中,GBSI 提供了与 CSA 相似的萎缩率,但测量变异性降低。GBSI 在区分健康对照者与 CIS(曲线下面积[AUC] = 0.66 对 0.53;p = 0.03)、RRMS(AUC = 0.73 对 0.59;p<0.001)、PMS(AUC = 0.77 对 0.53;p<0.001),以及有残疾进展的患者与无进展的患者(AUC = 0.59 对 0.50;p = 0.04)方面表现优于 CSA。GBSI 检测 1 年内脊髓萎缩 60%治疗效果的样本量比 CSA 少(CIS:106 对 830;RRMS:95 对 335;PMS:44 对 215;功率=80%;α=5%)。
与传统的基于分割的方法(CSA)相比,基于注册的方法(GBSI)可以更好地将 MS 患者与健康对照者区分开来,并提高统计学效能,尽管它仍远未达到理想状态。