Suppr超能文献

用于主族键形成催化的三氨基胺负载锆化合物

Triamidoamine-Supported Zirconium Compounds in Main Group Bond-Formation Catalysis.

作者信息

Waterman Rory

机构信息

Department of Chemistry , University of Vermont , Burlington , Vermont 05405 , United States.

出版信息

Acc Chem Res. 2019 Aug 20;52(8):2361-2369. doi: 10.1021/acs.accounts.9b00284. Epub 2019 Aug 6.

Abstract

The rationale to pursue long-term study of any system must be sound. Quick discoveries and emergent fields are more than temptations. They remind us to ask what are we gaining through continued study of any system. For triamidoamine-supported zirconium, there has been a great deal gained with yet more ahead. Initial study of the system taught much that is applied to catalysis. Cyclometalation of a trimethylsilyl substituent of the ancillary ligand, abbreviated (NN) when not metalated for simplicity, via C-H bond activation is facile and highly reversible. It has allowed for the synthesis of a range of Zr-E bonds, which are of fundamental interest. More germane, cyclometalation has emerged as our primary product liberation step in catalysis. Cyclometalation also appears to be a catalyst resting state, despite how cyclometalation is a known deactivation step for many a compound in other circumstances. Catalysis with triamidoamine-supported zirconium has been rich. Rather than summarizing the breadth of reactions, a more detailed report on the dehydrocoupling of phosphines and hydrophosphination is provided. Both reactions demonstrate the outward impact that the study of (NN)Zr-based catalysis has afforded. Dehydrocoupling catalysis, or bond formation via loss of hydrogen, is particular to 3p and heavier main group elements. The reaction has been important in the formation of E-E and E-E' bonds in the main group for molecular species and materials. While study of this reaction at (NN)Zr compounds provides key insights into mechanism, discoveries in the area of P-P and Si-Si bond formation with (NN)Zr derivatives as catalysts have greater reach than merely the synthesis of main group element containing products. For example, that work has informed design principles for the identification of catalysts that transfer low-valent fragments. The successful application of these principles was evident in the discovery of a catalyst that transfers phosphinidene ("PR") to unsaturated substrates. Hydrophosphination exhibits perfect atom economy in the formation of P-C bonds. The reaction can proceed without a catalyst, but the purpose of a catalyst is enhanced reactivity and selectivity. Nevertheless, significant challenges in this reaction remain. In particular, (NN)Zr compounds have demonstrated high activity in hydrophosphination and readily utilize unactivated unsaturated organic molecules, challenging substrates for any heterofunctionalization reaction. This activity has led to not only impressive metrics in the catalysis but access to previously untouched substrates and formation of unique products. The particular properties of the (NN)Zr system that engage in this reactivity may influence other heterofunctionalization reactions. The recently discovered photocatalytic hydrophosphination with (NN)ZrPRR' compounds already appears to be general rather than unique and may drive additional bond formation catalysis among early transition-metal compounds.

摘要

对任何体系进行长期研究的基本原理必须合理。快速的发现和新兴领域颇具诱惑。它们促使我们思考,通过对任何体系的持续研究,我们能获得什么。对于三酰胺胺支撑的锆体系,已经取得了很多成果,而且未来还有更多。对该体系的初步研究揭示了许多可应用于催化的知识。辅助配体的三甲基硅基取代基(为简便起见,未金属化时缩写为(NN))通过C-H键活化进行环金属化很容易且高度可逆。这使得一系列Zr-E键得以合成,这些键具有重要的基础研究价值。更密切相关的是,环金属化已成为我们催化反应中主要的产物释放步骤。尽管在其他情况下环金属化是许多化合物已知的失活步骤,但它似乎也是催化剂的静止状态。三酰胺胺支撑的锆催化反应成果丰硕。这里并非总结反应的广度,而是提供一份关于膦的脱氢偶联和氢膦化反应的更详细报告。这两个反应都展示了基于(NN)Zr催化研究所产生的外在影响。脱氢偶联催化,即通过氢的损失形成键,对于3p及更重的主族元素来说是特定的。该反应在主族分子物种和材料中E-E键和E-E'键的形成中具有重要意义。虽然对(NN)Zr化合物的该反应研究为反应机理提供了关键见解,但以(NN)Zr衍生物为催化剂在P-P和Si-Si键形成领域的发现,其影响范围不仅仅局限于含主族元素产物的合成。例如,这项工作为识别转移低价片段的催化剂提供了设计原则。这些原则的成功应用在发现一种能将磷烯(“PR”)转移到不饱和底物的催化剂中得到了体现。氢膦化在形成P-C键时表现出完美的原子经济性。该反应可以在无催化剂的情况下进行,但催化剂的作用是提高反应活性和选择性。然而,此反应仍存在重大挑战。特别是,(NN)Zr化合物在氢膦化反应中表现出高活性,并且很容易利用未活化的不饱和有机分子,这对于任何杂官能化反应来说都是具有挑战性的底物。这种活性不仅在催化反应中带来了令人印象深刻的指标,还使得能够接触到以前未涉及的底物并形成独特的产物。参与这种反应活性的(NN)Zr体系的特殊性质可能会影响其他杂官能化反应。最近发现的用(NN)ZrPRR'化合物进行的光催化氢膦化反应似乎已经具有普遍性而非独特性,并且可能推动早期过渡金属化合物之间更多的键形成催化反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验