Liu Zhaoyang, Zhang Heng, Eredia Matilde, Qiu Haixin, Baaziz Walid, Ersen Ovidiu, Ciesielski Artur, Bonn Mischa, Wang Hai I, Samorì Paolo
Université de Strasbourg and CNRS , ISIS, 8 allée Gaspard Monge , 67000 Strasbourg , France.
Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.
ACS Nano. 2019 Aug 27;13(8):9431-9441. doi: 10.1021/acsnano.9b04232. Epub 2019 Aug 12.
Graphene has been the subject of widespread research during the past decade because of its outstanding physical properties which make it an ideal nanoscale material to investigate fundamental properties. Such characteristics promote graphene as a functional material for the emergence of disruptive technologies. However, to impact daily life products and devices, high-quality graphene needs to be produced in large quantities using an environmentally friendly protocol. In this context, the production of graphene which preserves its outstanding electronic properties using a green chemistry approach remains a key challenge. Herein, we report the efficient production of electrode material for micro-supercapacitors obtained by functionalization of water-dispersed high-quality graphene nanosheets with polydopamine. High-frequency (terahertz) conductivity measurements of the graphene nanosheets reveal high charge carrier mobility up to 1000 cm V s. The fine water dispersibility enables versatile functionalization of graphene, as demonstrated by the pseudocapacitive polydopamine coating of graphene nanosheets. The polydopamine functionalization causes a modest, , 20%, reduction of charge carrier mobility. Thin film electrodes based on such hybrid materials for micro-supercapacitors exhibit excellent electrochemical performance, namely a volumetric capacitance of 340 F cm and a power density of 1000 W cm, thus outperforming most of the reported graphene-based micro-supercapacitors. These results highlight the potential for water-dispersed, high-quality graphene nanosheets as a platform material for energy-storage applications.
在过去十年中,石墨烯一直是广泛研究的主题,因为其出色的物理性质使其成为研究基本性质的理想纳米材料。这些特性促使石墨烯成为颠覆性技术出现的功能材料。然而,要影响日常生活产品和设备,需要使用环保方案大量生产高质量的石墨烯。在这种情况下,使用绿色化学方法生产保留其出色电子性质的石墨烯仍然是一个关键挑战。在此,我们报告了通过用聚多巴胺对水分散的高质量石墨烯纳米片进行功能化而获得的用于微型超级电容器的电极材料的高效生产。石墨烯纳米片的高频(太赫兹)电导率测量显示出高达1000 cm² V⁻¹ s⁻¹ 的高电荷载流子迁移率。良好的水分散性使石墨烯能够进行多种功能化,石墨烯纳米片的赝电容聚多巴胺涂层就证明了这一点。聚多巴胺功能化使电荷载流子迁移率适度降低,约20%。基于这种用于微型超级电容器的混合材料的薄膜电极表现出优异的电化学性能,即体积电容为340 F cm⁻³ 和功率密度为1000 W cm⁻³,因此优于大多数已报道的基于石墨烯的微型超级电容器。这些结果突出了水分散的高质量石墨烯纳米片作为储能应用平台材料的潜力。