Chávez-Cervantes M, Topp G E, Aeschlimann S, Krause R, Sato S A, Sentef M A, Gierz I
Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg 22761, Germany.
Phys Rev Lett. 2019 Jul 19;123(3):036405. doi: 10.1103/PhysRevLett.123.036405.
Charge density waves (CDWs) are symmetry-broken ground states that commonly occur in low-dimensional metals due to strong electron-electron and/or electron-phonon coupling. The nonequilibrium carrier distribution established via photodoping with femtosecond laser pulses readily quenches these ground states and induces an ultrafast insulator-to-metal phase transition. To date, CDW melting has been mainly investigated in the single-photon regime with pump photon energies bigger than the gap size. The recent development of strong-field midinfrared sources now enables the investigation of CDW dynamics following subgap excitation. Here we excite prototypical one-dimensional indium wires with a CDW gap of ∼300 meV with midinfrared pulses at ℏω=190 meV with MV/cm field strength and probe the transient electronic structure with time- and angle-resolved photoemission spectroscopy. We find that the CDW gap is filled on a timescale short compared to our temporal resolution of 300 fs and that the band structure changes are completed within ∼1 ps. Supported by a minimal theoretical model we attribute our findings to multiphoton absorption across the CDW gap.
电荷密度波(CDW)是一种对称性破缺的基态,由于强电子 - 电子和/或电子 - 声子耦合,通常出现在低维金属中。通过飞秒激光脉冲光掺杂建立的非平衡载流子分布很容易淬灭这些基态,并诱导超快的绝缘体到金属的相变。迄今为止,CDW熔化主要是在泵浦光子能量大于能隙大小的单光子 regime 中进行研究的。强场中红外光源的最新发展现在使得能够研究亚能隙激发后的CDW动力学。在这里,我们用具有MV/cm场强的ℏω = 190 meV的中红外脉冲激发具有约300 meV CDW能隙的典型一维铟线,并用时间和角度分辨光电子能谱探测瞬态电子结构。我们发现,与我们300 fs的时间分辨率相比,CDW能隙在短时间尺度上被填充,并且能带结构变化在约1 ps内完成。在一个最小理论模型的支持下,我们将我们的发现归因于跨CDW能隙的多光子吸收。