Lackner Peter, Zou Zhiyu, Mayr Sabrina, Diebold Ulrike, Schmid Michael
Institute of Applied Physics, TU Wien, 1040 Vienna, Austria.
Phys Chem Chem Phys. 2019 Aug 15;21(32):17613-17620. doi: 10.1039/c9cp03322j.
X-ray photoelectron spectroscopy (XPS) of five-monolayer-thick ZrO2 films reveals a core level binding energy difference of up to 1.8 eV between the tetragonal and monoclinic phase. This difference is explained by positively charged oxygen vacancies in the tetragonal films, which are slightly reduced. Due to the large band gap of zirconia (≈5-6 eV), these charges shift the electron levels, leading to higher binding energies of reduced tetragonal films w.r.t. fully oxidized monoclinic films. These core level shifts have the opposite direction than what is usually encountered for reduced transition metal oxides. The vacancies can be filled via oxygen spillover from a catalyst that enables O2 dissociation. This can be either a metal deposited on the film, or, if the film has holes, the metallic (in our case, Rh) substrate. Our study also confirms that tetragonal ZrO2 is stabilized via oxygen vacancies and shows that the XPS binding energy difference between O 1s and Zr 3d solely depends on the crystallographic phase.
对五层原子厚度的ZrO₂薄膜进行的X射线光电子能谱(XPS)分析表明,四方相和单斜相之间的核心能级结合能差高达1.8 eV。这种差异可由四方相薄膜中带正电的氧空位来解释,这些氧空位略有减少。由于氧化锆的带隙较大(约5 - 6 eV),这些电荷会使电子能级发生移动,导致还原后的四方相薄膜相对于完全氧化的单斜相薄膜具有更高的结合能。这些核心能级的移动方向与还原过渡金属氧化物时通常遇到的情况相反。空位可以通过来自能够使O₂解离的催化剂的氧溢流来填充。这种催化剂可以是沉积在薄膜上的金属,或者,如果薄膜有孔洞,也可以是金属(在我们的例子中是Rh)衬底。我们的研究还证实,四方相ZrO₂通过氧空位得以稳定,并表明O 1s和Zr 3d之间的XPS结合能差仅取决于晶体相。