Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany.
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany.
New Phytol. 2019 Dec;224(4):1668-1684. doi: 10.1111/nph.16093. Epub 2019 Sep 18.
Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.
缺氧在植物发育过程中经常发生,并且可以通过环境因素诱导,例如水涝。为了了解植物组织生理学如何对逐渐缺氧的情况做出反应,我们旨在实时和在体监测亚细胞生理学的变化。我们建立了一个基于荧光蛋白传感器的系统,用于监测活体拟南芥叶片亚细胞生理学的动态变化,并举例说明了它在缺氧应激下的适用性。通过同时监测细胞质中镁腺苷 5'-三磷酸、游离钙离子浓度、pH 值、NAD 氧化还原状态和谷胱甘肽氧化还原状态的动态变化,并与转录和代谢反应相联系,我们生成了对逐渐缺氧的生理反应的综合图像。我们表明,即使植物的碳状态发生改变,例如通过蔗糖喂养或延长夜间,生理变化仍然非常稳健。线粒体呼吸链的抑制导致细胞质生理学的动态变化与缺氧时的变化非常相似,这突出了线粒体电子传递作为缺氧对细胞器以外的细胞后果的关键决定因素。我们建立了一个广泛适用于植物应激生理学的体内平行感应系统,以描绘出发生线粒体逆行信号和低氧信号的生理环境,表明存在共享的上游刺激。