Suppr超能文献

缺氧植物中的代谢策略。

Metabolic strategies in hypoxic plants.

作者信息

van Veen Hans, Triozzi Paolo Maria, Loreti Elena

机构信息

Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands.

PlantLab, Institute of Plant Sciences, Sant'Anna School of Advanced Studies, 56010 Pisa, Italy.

出版信息

Plant Physiol. 2024 Dec 23;197(1). doi: 10.1093/plphys/kiae564.

Abstract

Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms, including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide ATP to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.

摘要

复杂的多细胞生物是在富含氧气的大气中进化而来的。因此,氧气对于包括植物在内的所有需氧生物通过细胞呼吸产生能量至关重要。然而,在极端洪水事件之后,以及在以高耗氧量为特征的增殖器官或组织的通气条件下,植物可能会经历缺氧状态。当氧气供应受到影响时,植物会采取不同的策略来应对缺氧和有限的通气。不同植物物种的一个共同特征是激活厌氧发酵代谢,以在缺氧条件下提供ATP来维持细胞内稳态。发酵还需要许多糖类底物,这并不总是可行的,因此需要替代代谢策略。最近的研究结果还表明,在通气条件下,植物特定器官或组织中的缺氧代谢也很活跃。在这里,我们描述了控制植物代谢策略的调控机制,以及这些机制如何使植物尽管面临挑战仍能茁壮成长。对缺氧代谢背后的遗传和生理成分进行全面的机制理解,应该有助于提供机会,在当前气候变化情景下提高植物的适应能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8499/11663712/c5920a8f4a7e/kiae564f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验