McLean Ben, Webber Grant B, Page Alister J
J Am Chem Soc. 2019 Aug 28;141(34):13385-13393. doi: 10.1021/jacs.9b03484. Epub 2019 Aug 19.
Despite boron nitride nanotubes (BNNTs) first being synthesized in the 1990s, their nucleation mechanism remains unknown. Here we report nonequilibrium molecular dynamics simulations showing how BNNT cap structures form during Ni-catalyzed chemical vapor deposition (CVD) of ammonia borane. BN hexagonal ring networks are produced following the catalytic evolution of H from the CVD feedstock, the formation and polymerization of B-N chain structures, and the repeated cleavage of homoelemental B-B/N-N bonds by the catalyst surface. Defect-free BNNT cap structures then form perpendicular to the catalyst surface via direct fusion of adjacent BN networks. This BNNT network fusion mechanism is a marked deviation from the established mechanism for carbon nanotube nucleation during CVD and potentially explains why CVD-synthesized BNNTs are frequently observed having sharper tips and wider diameters compared to CVD-synthesized carbon nanotubes.
尽管氮化硼纳米管(BNNTs)早在20世纪90年代就已合成,但其成核机制仍然未知。在此,我们报告了非平衡分子动力学模拟,展示了在氨硼烷的镍催化化学气相沉积(CVD)过程中BNNT帽结构是如何形成的。随着CVD原料中氢的催化演化、B-N链结构的形成和聚合,以及催化剂表面对同元素B-B/N-N键的反复裂解,生成了BN六边形环网络。然后,通过相邻BN网络的直接融合,形成了垂直于催化剂表面的无缺陷BNNT帽结构。这种BNNT网络融合机制与CVD过程中碳纳米管成核的既定机制有显著偏差,并且可能解释了为什么与CVD合成的碳纳米管相比,经常观察到CVD合成的BNNTs具有更尖锐的尖端和更宽的直径。