Suppr超能文献

预测 RAG1 和 RAG2 变异的发生。

Predicting the Occurrence of Variants in RAG1 and RAG2.

机构信息

Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Wellcome Trust Brenner Building, Beckett Street, Leeds, UK.

NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK.

出版信息

J Clin Immunol. 2019 Oct;39(7):688-701. doi: 10.1007/s10875-019-00670-z. Epub 2019 Aug 6.

Abstract

While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.

摘要

虽然广泛的基因组测序开创了预防医学的新时代,但预测基因组学的工具仍有待发展。由于无法预测临床上相关的遗传变异,时间和资源的限制意味着人类疾病仍然没有得到充分的描述。在功能研究中,通常采用靶向高度保守蛋白区域的策略。然而,对于归因基因大多保守的罕见疾病,这种方法的优势就会丧失。一种免疫性疾病就是这种挑战的典型例子,其发生是由于 RAG1 和 RAG2 中的破坏性突变,这些突变会导致严重的免疫缺陷或自身免疫,在早期就表现出独特的表型。有许多工具可用于预测变异的致病性,但这些工具无法说明变异发生的概率。在这里,我们提出了一种预测 RAG1 和 RAG2 蛋白中每个氨基酸残基发生突变的可能性的方法。利用大约 146000 个人的群体遗传学数据进行罕见变异分析。使用来自 110 个 RAG1/2 突变体的 44 个已知致病性变异和重组活性测量值来验证计算出的分数。将概率与目前已知的 98 个人类疾病病例进行比较。还使用了 558 名原发性免疫缺陷但 RAG 缺乏阴性的患者的基因组序列数据集作为验证对照。我们比较了突变可能性和致病性预测之间的差异。我们的方法构建了最可能发生突变的图谱,允许预先进行功能分析。这种方法可以应用于其他疾病,以期为临床诊断做好更充分的准备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41f0/6754361/713d6e909940/10875_2019_670_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验