Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Korea.
The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Korea.
FEBS J. 2019 Dec;286(23):4661-4674. doi: 10.1111/febs.15037. Epub 2019 Aug 17.
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems constitute the adaptive immunity of bacteria and archaea, degrading nucleic acids of invading phages and plasmids. In response, phages employ anti-CRISPR (Acr) proteins as a counterdefense mechanism to neutralize the host immunity. AcrIIC3 directly inhibits target DNA cleavage of type II-C Cas9 of Neisseria meningitidis. Here, we show that AcrIIC3 interacts with the HNH nuclease domain of N. meningitidis Cas9 to inhibit its nuclease activity in an allosteric manner. The crystal structure of the AcrIIC3-HNH complex reveals that AcrIIC3 binds opposite the active site on the HNH nuclease domain. AcrIIC3 employs a unique interface for HNH, allowing it to discriminate between Cas9 orthologs, which contrasts with the broad spectrum of Cas9 inhibition by AcrIIC1. Interface residues of HNH provide key electrostatic and hydrophobic interactions that determine the host specificity of AcrIIC3. Mutations that replace HNH interfaces of N. meningitidis Cas9 with those of Geobacillus stearothermophilus Cas9 or Campylobacter jejuni Cas9 significantly attenuate AcrIIC3 binding, illustrating that the divergent interaction surface confers the host specificity of AcrIIC3. Our study demonstrates that the variable sequences of binding interface can define the target specificity of Acr proteins, suggesting potential applications in Cas9 control for gene editing.
成簇规律间隔短回文重复序列 (CRISPR)-Cas 系统构成了细菌和古菌的适应性免疫,可降解入侵噬菌体和质粒的核酸。作为回应,噬菌体利用抗 CRISPR (Acr) 蛋白作为一种反防御机制来中和宿主免疫。AcrIIC3 可直接抑制脑膜炎奈瑟菌 II-C 型 Cas9 对靶 DNA 的切割。在这里,我们表明 AcrIIC3 以别构方式与脑膜炎奈瑟菌 Cas9 的 HNH 核酸酶结构域相互作用,从而抑制其核酸酶活性。AcrIIC3-HNH 复合物的晶体结构表明,AcrIIC3 结合在 HNH 核酸酶结构域的活性位点对面。AcrIIC3 采用独特的 HNH 结合界面,使其能够区分 Cas9 同源物,与 AcrIIC1 对 Cas9 的广谱抑制形成对比。HNH 的界面残基提供了决定 AcrIIC3 宿主特异性的关键静电和疏水相互作用。用来自 Geobacillus stearothermophilus Cas9 或 Campylobacter jejuni Cas9 的 HNH 界面取代脑膜炎奈瑟菌 Cas9 的界面残基的突变,显著削弱了 AcrIIC3 的结合,这表明不同的相互作用表面赋予了 AcrIIC3 的宿主特异性。我们的研究表明,结合界面的可变序列可以定义 Acr 蛋白的靶标特异性,这表明在 Cas9 控制基因编辑方面具有潜在的应用。