Ray Angana, Di Felice Rosa
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
Department of Biological Sciences, Quantitative and Computational Biology Sector, University of Southern California, Los Angeles, California 90089, United States.
J Phys Chem B. 2020 Mar 19;124(11):2168-2179. doi: 10.1021/acs.jpcb.9b07722. Epub 2020 Mar 4.
Class 2 CRISPR (clustered regularly interspaced short palindromic repeats) systems offer a unique protocol for genome editing in eukaryotic cells. The nuclease activity of Cas9 has been harnessed to perform precise genome editing by creating double-strand breaks. However, the nuclease activity of Cas9 can be triggered when there is imperfect complementarity between the RNA guide sequence and an off-target genomic site, which is a major limitation of the CRISPR technique for practical applications. Hence, understanding the binding mechanisms in CRISPR/Cas9 for predicting ways to increase cleavage specificity is a timely research target. One way to understand and tune the binding strength is to study wild-type and mutant Cas9, in complex with a guide RNA and a target DNA. We have performed classical all-atom MD simulations over a cumulative time scale of 13.5 μs of CRISPR/Cas9 ternary complexes with the wild-type Cas9 from and three of its mutants: K855A, H982A, and the combination K855A+H982A, selected from the outcome of experimental work. Our results reveal significant structural impact of the mutations, with implications for specificity. We find that the "unwound" part of the nontarget DNA strand exhibits enhanced flexibility in complexes with Cas9 mutants and tries to move away from the HNH/RuvC interface, where it is otherwise stabilized by electrostatic couplings in the wild-type complex. Our findings refine an electrostatic model by which cleavage specificity can be optimized through protein mutations.
2类CRISPR(成簇规律间隔短回文重复序列)系统为真核细胞中的基因组编辑提供了一种独特的方案。Cas9的核酸酶活性已被用于通过产生双链断裂来进行精确的基因组编辑。然而,当RNA引导序列与脱靶基因组位点之间存在不完全互补时,Cas9的核酸酶活性就会被触发,这是CRISPR技术在实际应用中的一个主要限制。因此,了解CRISPR/Cas9中的结合机制以预测提高切割特异性的方法是一个及时的研究目标。理解和调节结合强度的一种方法是研究与引导RNA和靶DNA形成复合物的野生型和突变型Cas9。我们对来自 的野生型Cas9及其三个突变体K855A、H982A以及K855A + H982A组合的CRISPR/Cas9三元复合物进行了累计时间尺度为13.5微秒的经典全原子分子动力学模拟,这些突变体是从实验工作结果中挑选出来的。我们的结果揭示了这些突变对结构有显著影响,并对特异性有影响。我们发现,非靶DNA链的“解旋”部分在与Cas9突变体形成的复合物中表现出增强的灵活性,并试图远离HNH/RuvC界面,而在野生型复合物中,它通过静电耦合在该界面处得以稳定。我们的发现完善了一个静电模型,通过该模型可以通过蛋白质突变优化切割特异性。