Cai Wenting, Abella Laura, Zhuang Jiaxin, Zhang Xingxing, Feng Lai, Wang Yaofeng, Morales-Martínez Roser, Esper Ronda, Boero Mauro, Metta-Magaña Alejandro, Rodríguez-Fortea Antonio, Poblet Josep M, Echegoyen Luis, Chen Ning
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , Jiangsu 215123 , PR China.
Department of Chemistry , University of Texas at El Paso , 500 W University Avenue , El Paso , Texas 79968 , United States.
J Am Chem Soc. 2018 Dec 26;140(51):18039-18050. doi: 10.1021/jacs.8b10435. Epub 2018 Dec 4.
For the first time, actinide endohedral metallofullerenes (EMFs) with non-isolated-pentagon-rule (non-IPR) carbon cages, U@C, Th@C, and U@C, have been successfully synthesized and fully characterized by mass spectrometry, single crystal X-ray diffractometry, UV-vis-NIR and Raman spectroscopy, and cyclic voltammetry. Crystallographic analysis revealed that the U@C and Th@C share the same non-IPR cage of C(28324)-C, and U@C was assigned to non-IPR U@ C(17418)-C. All of these cages are chiral and have never been reported before. Further structural analyses show that enantiomers of C(17418)-C and C(28324)-C share a significant continuous portion of the cage and are topologically connected by only two C insertions. DFT calculations show that the stabilization of these unique non-IPR fullerenes originates from a four-electron transfer, a significant degree of covalency, and the resulting strong host-guest interactions between the actinide ions and the fullerene cages. Moreover, because the actinide ion displays high mobility within the fullerene, both the symmetry of the carbon cage and the possibility of forming chiral fullerenes play important roles to determine the isomer abundances at temperatures of fullerene formation. This study provides what is probably one of the most complete examples in which carbon cage selection occurs through thermodynamic control at high temperatures, so the selected cages do not necessarily coincide with the most stable ones at room temperature. This work also demonstrated that the metal-cage interactions in actinide EMFs show remarkable differences from those previously known for lanthanide EMFs. These unique interactions not only could stabilize new carbon cage structures, but more importantly, they lead to a new family of metallofullerenes for which the cage selection pattern is different to that observed so far for nonactinide EMFs. For this new family, the simple ionic A @C model makes predictions less reliable, and in general, unambiguously discerning the isolated structures requires the combination of accurate computational and experimental data.
首次成功合成了具有非孤立五边形规则(non-IPR)碳笼的锕系内嵌金属富勒烯(EMFs),即U@C、Th@C和U@C,并通过质谱、单晶X射线衍射、紫外-可见-近红外和拉曼光谱以及循环伏安法对其进行了全面表征。晶体学分析表明,U@C和Th@C共享相同的C(28324)-C非IPR笼,而U@C被归为非IPR U@C(17418)-C。所有这些笼都是手性的,且此前从未有过报道。进一步的结构分析表明,C(17418)-C和C(28324)-C的对映体共享笼的一个显著连续部分,并且仅通过两个C插入在拓扑上相连。密度泛函理论计算表明,这些独特的非IPR富勒烯的稳定性源于四电子转移、显著程度的共价性以及由此产生的锕系离子与富勒烯笼之间强烈的主客体相互作用。此外,由于锕系离子在富勒烯内具有高迁移率,碳笼的对称性和形成手性富勒烯的可能性在确定富勒烯形成温度下的异构体丰度方面都起着重要作用。这项研究提供了可能是最完整的例子之一,即在高温下通过热力学控制进行碳笼选择,因此所选的笼不一定与室温下最稳定的笼一致。这项工作还表明,锕系EMFs中的金属-笼相互作用与之前已知的镧系EMFs中的相互作用有显著差异。这些独特的相互作用不仅可以稳定新的碳笼结构,更重要的是,它们导致了一类新的金属富勒烯,其笼选择模式与迄今为止观察到的非锕系EMFs不同。对于这个新家族,简单的离子A@C模型的预测不太可靠,一般来说,明确辨别孤立结构需要准确的计算和实验数据相结合。