Division of Acute Care Surgery, Department of Surgery, The University of Texas Health Science Center and the McGovern School of Medicine, Houston, Texas.
Center for Translational Injury Research, Houston, Texas.
Shock. 2020 Feb;53(2):156-163. doi: 10.1097/SHK.0000000000001432.
Endothelial dysfunction during hemorrhagic shock (HS) is associated with loss of cell-associated syndecan-1 (Sdc1) and hyperpermeability. Fresh frozen plasma (FFP) preserves Sdc1 and reduces permeability following HS, although the key mediators remain unknown. Antithrombin III (ATIII) is a plasma protein with potent anti-inflammatory and endothelial protective activity. We hypothesized that the protective effects of FFP on endothelial Sdc1 and permeability are mediated, in part, through ATIII.
ATIII and Sdc1 were measured in severely injured patients upon admission (N = 125) and hospital day 3 (N = 90) for correlation analysis. In vitro effects of ATIII on human lung microvascular endothelial cells (HLMVECs) were determined by pretreating cells with vehicle, FFP, ATIII-deficient FFP, or purified ATIII followed by TNFα stimulation. Sdc1 expression was measured by immunostaining and permeability by electrical impedance. To determine the role of ATIII in vivo, male mice were subjected to a fixed pressure exsanguination model of HS, followed by resuscitation with FFP, ATIII-deficient FFP, or ATIII-deficient FFP with ATIII repletion. Lung Sdc1 expression was assessed by immunostaining.
Pearson correlation analysis showed a significant negative correlation between plasma levels of Sdc1 and ATIII (R = -0.62; P < 0.0001) in injured patients on hospital day 3. Also, in vitro, FFP and ATIII prevented TNFα-induced permeability (P < 0.05 vs TNFα) in HLMVECs. ATIII-deficient FFP had no effect; however, ATIII restoration reestablished its protective effects in a dose-dependent manner. Similarly, FFP and ATIII prevented TNFα-induced Sdc1 shedding in HLMVECs; however, ATIII-deficient FFP did not. In mice, Sdc1 expression was increased following FFP resuscitation (1.7 ± 0.5, P < 0.01) vs. HS alone (1.0 ± 0.3); however, no improvement was seen following ATIII-deficient FFP treatment (1.3 ± 0.4, P = 0.3). ATIII restoration improved Sdc1 expression (1.5 ± 0.9, P < 0.05) similar to that of FFP resuscitation.
ATIII plays a role in FFP-mediated protection of endothelial Sdc1 expression and barrier function, making it a potential therapeutic target to mitigate HS-induced endothelial dysfunction. Further studies are needed to elucidate the mechanisms by which ATIII protects the endothelium.
出血性休克(HS)期间的内皮功能障碍与细胞相关的连接蛋白-1(Sdc1)丧失和通透性增加有关。新鲜冷冻血浆(FFP)可保留 Sdc1 并降低 HS 后的通透性,但关键介质仍不清楚。抗凝血酶 III(ATIII)是一种具有强大抗炎和内皮保护活性的血浆蛋白。我们假设 FFP 对内皮 Sdc1 和通透性的保护作用部分是通过 ATIII 介导的。
在严重受伤的患者入院时(N=125)和住院第 3 天(N=90)测量 ATIII 和 Sdc1,进行相关性分析。通过用载体、FFP、缺乏 ATIII 的 FFP 或纯化的 ATIII 预处理细胞,然后用 TNFα 刺激,确定 ATIII 对人肺微血管内皮细胞(HLMVEC)的体外作用。通过免疫染色测量 Sdc1 表达,通过电阻抗测量通透性。为了确定 ATIII 在体内的作用,雄性小鼠接受固定压力失血性休克模型,然后用 FFP、缺乏 ATIII 的 FFP 或缺乏 ATIII 的 FFP 加 ATIII 补充进行复苏。通过免疫染色评估肺 Sdc1 表达。
Pearson 相关性分析显示,住院第 3 天受伤患者的血浆 Sdc1 和 ATIII 水平呈显著负相关(R= -0.62;P<0.0001)。此外,体外研究表明,FFP 和 ATIII 可预防 HLMVEC 中 TNFα 诱导的通透性(P<0.05 与 TNFα 相比)。缺乏 ATIII 的 FFP 没有效果;然而,ATIII 恢复以剂量依赖的方式重建其保护作用。同样,FFP 和 ATIII 可预防 HLMVEC 中 TNFα 诱导的 Sdc1 脱落;然而,缺乏 ATIII 的 FFP 则不能。在小鼠中,FFP 复苏后 Sdc1 表达增加(1.7±0.5,P<0.01),而单独 HS 则没有增加(1.0±0.3);然而,缺乏 ATIII 的 FFP 治疗后未见改善(1.3±0.4,P=0.3)。ATIII 恢复可改善 Sdc1 表达(1.5±0.9,P<0.05),类似于 FFP 复苏的效果。
ATIII 在 FFP 介导的内皮 Sdc1 表达和屏障功能保护中发挥作用,使其成为减轻 HS 诱导的内皮功能障碍的潜在治疗靶点。需要进一步研究阐明 ATIII 保护内皮的机制。