Suppr超能文献

一种定量评估生态随机性的通用框架。

A general framework for quantitatively assessing ecological stochasticity.

机构信息

Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019.

School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019.

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16892-16898. doi: 10.1073/pnas.1904623116. Epub 2019 Aug 7.

Abstract

Understanding the community assembly mechanisms controlling biodiversity patterns is a central issue in ecology. Although it is generally accepted that both deterministic and stochastic processes play important roles in community assembly, quantifying their relative importance is challenging. Here we propose a general mathematical framework to quantify ecological stochasticity under different situations in which deterministic factors drive the communities more similar or dissimilar than null expectation. An index, normalized stochasticity ratio (), was developed with 50% as the boundary point between more deterministic (<50%) and more stochastic (>50%) assembly. was tested with simulated communities by considering abiotic filtering, competition, environmental noise, and spatial scales. All tested approaches showed limited performance at large spatial scales or under very high environmental noise. However, in all of the other simulated scenarios, showed high accuracy (0.90 to 1.00) and precision (0.91 to 0.99), with averages of 0.37 higher accuracy (0.1 to 0.7) and 0.33 higher precision (0.0 to 1.8) than previous approaches. was also applied to estimate stochasticity in the succession of a groundwater microbial community in response to organic carbon (vegetable oil) injection. Our results showed that community assembly was shifted from more deterministic ( = 21%) to more stochastic ( = 70%) right after organic carbon input. As the vegetable oil was consumed, the community gradually returned to be more deterministic ( = 27%). In addition, our results demonstrated that null model algorithms and community similarity metrics had strong effects on quantifying ecological stochasticity.

摘要

理解控制生物多样性模式的群落组装机制是生态学的一个核心问题。尽管人们普遍认为,确定性和随机性过程都在群落组装中发挥着重要作用,但定量它们的相对重要性是具有挑战性的。在这里,我们提出了一个通用的数学框架,以量化在确定性因素使群落更相似或更不相似于零期望的不同情况下的生态随机性。我们提出了一个指数,归一化随机性比(),其 50%作为确定性(<50%)和随机性(>50%)组装之间的边界点。通过考虑非生物过滤、竞争、环境噪声和空间尺度,用模拟群落来测试。所有测试的方法在大空间尺度或非常高的环境噪声下表现出有限的性能。然而,在所有其他模拟的情况下,显示出高的准确性(0.90 到 1.00)和精度(0.91 到 0.99),平均比以前的方法高 0.37 个准确性(0.1 到 0.7)和 0.33 个精度(0.0 到 1.8)。还应用于估计地下水微生物群落对有机碳(植物油)注入的响应中的随机性。我们的结果表明,群落组装从更确定性(=21%)转变为更随机性(=70%),就在有机碳输入之后。随着植物油的消耗,群落逐渐恢复到更确定性(=27%)。此外,我们的结果表明,零模型算法和群落相似性度量对量化生态随机性有很强的影响。

相似文献

1
A general framework for quantitatively assessing ecological stochasticity.一种定量评估生态随机性的通用框架。
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16892-16898. doi: 10.1073/pnas.1904623116. Epub 2019 Aug 7.
2
Stochasticity, succession, and environmental perturbations in a fluidic ecosystem.流体生态系统中的随机性、演替和环境干扰。
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):E836-45. doi: 10.1073/pnas.1324044111. Epub 2014 Feb 18.
3
Stochastic Community Assembly: Does It Matter in Microbial Ecology?随机群落组装:在微生物生态学中重要吗?
Microbiol Mol Biol Rev. 2017 Oct 11;81(4). doi: 10.1128/MMBR.00002-17. Print 2017 Dec.

引用本文的文献

本文引用的文献

1
4
Stochastic Community Assembly: Does It Matter in Microbial Ecology?随机群落组装:在微生物生态学中重要吗?
Microbiol Mol Biol Rev. 2017 Oct 11;81(4). doi: 10.1128/MMBR.00002-17. Print 2017 Dec.
7
The Ecology and Evolution of Microbial Competition.微生物竞争的生态与进化。
Trends Microbiol. 2016 Oct;24(10):833-845. doi: 10.1016/j.tim.2016.06.011. Epub 2016 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验