Suppr超能文献

贝叶斯分析表明,在马拉维中部进行的纵向农场调查揭示了产量决定因素和特定地点的管理策略。

A Bayesian analysis of longitudinal farm surveys in Central Malawi reveals yield determinants and site-specific management strategies.

机构信息

Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States of America.

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America.

出版信息

PLoS One. 2019 Aug 8;14(8):e0219296. doi: 10.1371/journal.pone.0219296. eCollection 2019.

Abstract

Understanding the challenges to increasing maize productivity in sub-Saharan Africa, especially agronomic factors that reduce on-farm crop yield, has important implications for policies to reduce national and global food insecurity. Previous research on the maize yield gap has tended to emphasize the size of the gap (theoretical vs. achievable yields), rather than what determines maize yield in specific contexts. As a result, there is insufficient evidence on the key agronomic and environmental factors that influence maize yield in a smallholder farm environment. In this study, we implemented a Bayesian analysis with plot-level longitudinal household survey data covering 1,197 plots and 320 farms in Central Malawi. Households were interviewed and monitored three times per year, in 2015 and 2016, to document farmer management practices and seasonal rainfall, and direct measurements were taken of plant and soil characteristics to quantify impact on plot-level maize yield stability. The results revealed a high positive association between a leaf chlorophyll indicator and maize yield, with significance levels exceeding 95% Bayesian credibility at all sites and a regression coefficient posterior mean from 28% to 42% on a relative scale. A parasitic weed, Striga asiatica, was the variable most consistently negatively associated with maize yield, exceeding 95% credibility in most cases, of high intensity, with regression means ranging from 23% to 38% on a relative scale. The influence of rainfall, either directly or indirectly, varied by site and season. We conclude that the factors preventing Striga infestation and enhancing nitrogen fertility will lead to higher maize yield in Malawi. To improve plant nitrogen status, fertilizer was effective at higher productivity sites, whereas soil carbon and organic inputs were important at marginal sites. Uniquely, a Bayesian approach allowed differentiation of response by site for a relatively modest sample size study (given the complexity of farm environments and management practices). Considering the biophysical constraints, our findings highlight management strategies for crop yields, and point towards area-specific recommendations for nitrogen management and crop yield.

摘要

了解撒哈拉以南非洲提高玉米生产力的挑战,特别是减少农田作物产量的农艺因素,对减少国家和全球粮食不安全的政策具有重要意义。以前关于玉米产量差距的研究往往强调差距的大小(理论产量与实际产量),而不是确定特定背景下玉米产量的因素。因此,关于影响小农农场环境中玉米产量的关键农艺和环境因素的证据不足。在这项研究中,我们利用涵盖马拉维中部的 1197 个地块和 320 个农场的地块层面的纵向家庭调查数据进行了贝叶斯分析。在 2015 年和 2016 年,每年对农户进行三次访谈和监测,记录农民管理措施和季节性降雨,并直接测量植物和土壤特征,以量化对地块层面玉米产量稳定性的影响。结果表明,叶片叶绿素指标与玉米产量之间存在高度正相关,在所有地点的置信水平均超过 95%,相对尺度上的回归系数后验均值在 28%至 42%之间。寄生杂草 Striga asiatica 是与玉米产量最一致负相关的变量,在大多数情况下,置信度超过 95%,强度很高,相对尺度上的回归均值在 23%至 38%之间。降雨的直接或间接影响因地点和季节而异。我们得出的结论是,防止 Striga 感染和提高氮素肥力的因素将导致马拉维的玉米产量更高。为了提高植物氮素状况,在生产力较高的地区肥料有效,而在边缘地区土壤碳和有机投入很重要。独特的是,贝叶斯方法允许根据地点区分响应,对于相对较小的样本量研究(考虑到农场环境和管理措施的复杂性)。考虑到生物物理限制,我们的研究结果强调了作物产量的管理策略,并为氮素管理和作物产量提出了针对特定地区的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eae7/6687183/87fad9e2277e/pone.0219296.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验