Suppr超能文献

具有量化测量和不确定内部耦合的时变复杂网络的方差约束递归状态估计

Variance-Constrained Recursive State Estimation for Time-Varying Complex Networks With Quantized Measurements and Uncertain Inner Coupling.

作者信息

Hu Jun, Wang Zidong, Liu Guo-Ping, Zhang Hongxu

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jun;31(6):1955-1967. doi: 10.1109/TNNLS.2019.2927554. Epub 2019 Aug 1.

Abstract

In this paper, a new recursive state estimation problem is discussed for a class of discrete time-varying stochastic complex networks with uncertain inner coupling and signal quantization under the error-variance constraints. The coupling strengths are allowed to be varying within certain intervals, and the measurement signals are subject to the quantization effects before being transmitted to the remote estimator. The focus of the conducted topic is on the design of a variance-constrained state estimation algorithm with the aim to ensure a locally minimized upper bound on the estimation error covariance at every sampling instant. Furthermore, the boundedness of the resulting estimation error is analyzed, and a sufficient criterion is established to ensure the desired exponential boundedness of the state estimation error in the mean square sense. Finally, some simulations are proposed with comparisons to illustrate the validity of the newly developed variance-constrained estimation method.

摘要

本文针对一类具有不确定内部耦合和信号量化的离散时变随机复杂网络,在误差方差约束下讨论了一种新的递归状态估计问题。耦合强度允许在一定区间内变化,测量信号在传输到远程估计器之前会受到量化影响。所开展主题的重点在于设计一种方差约束状态估计算法,旨在确保在每个采样时刻估计误差协方差的局部最小上界。此外,分析了所得估计误差的有界性,并建立了一个充分准则以确保状态估计误差在均方意义下具有期望的指数有界性。最后,提出了一些仿真并进行比较,以说明新开发的方差约束估计方法的有效性。

相似文献

1
Variance-Constrained Recursive State Estimation for Time-Varying Complex Networks With Quantized Measurements and Uncertain Inner Coupling.
IEEE Trans Neural Netw Learn Syst. 2020 Jun;31(6):1955-1967. doi: 10.1109/TNNLS.2019.2927554. Epub 2019 Aug 1.
2
Variance-Constrained State Estimation for Complex Networks With Randomly Varying Topologies.
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2757-2768. doi: 10.1109/TNNLS.2017.2700331. Epub 2017 May 23.
3
State Estimation for Discrete-Time Dynamical Networks With Time-Varying Delays and Stochastic Disturbances Under the Round-Robin Protocol.
IEEE Trans Neural Netw Learn Syst. 2017 May;28(5):1139-1151. doi: 10.1109/TNNLS.2016.2524621. Epub 2016 Feb 19.
5
A Recursive Approach to Quantized H State Estimation for Genetic Regulatory Networks Under Stochastic Communication Protocols.
IEEE Trans Neural Netw Learn Syst. 2019 Sep;30(9):2840-2852. doi: 10.1109/TNNLS.2018.2885723. Epub 2019 Jan 16.
6
Asynchronous Dissipative State Estimation for Stochastic Complex Networks With Quantized Jumping Coupling and Uncertain Measurements.
IEEE Trans Neural Netw Learn Syst. 2017 Feb;28(2):268-277. doi: 10.1109/TNNLS.2015.2503772. Epub 2015 Dec 24.
7
Resilient State Estimation for 2-D Time-Varying Systems With Redundant Channels: A Variance-Constrained Approach.
IEEE Trans Cybern. 2019 Jul;49(7):2479-2489. doi: 10.1109/TCYB.2018.2821188. Epub 2018 Apr 13.
8
An Event-Triggering Approach to Recursive Filtering for Complex Networks With State Saturations and Random Coupling Strengths.
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):4279-4289. doi: 10.1109/TNNLS.2019.2953649. Epub 2019 Dec 31.
9
Unscented-Kalman-Filter-Based Remote State Estimation for Complex Networks With Quantized Measurements and Amplify-and-Forward Relays.
IEEE Trans Cybern. 2024 Nov;54(11):6819-6831. doi: 10.1109/TCYB.2024.3446649. Epub 2024 Oct 30.
10
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
IEEE Trans Neural Netw Learn Syst. 2016 Aug;27(8):1604-14. doi: 10.1109/TNNLS.2014.2381853. Epub 2015 Jan 7.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验