Suppr超能文献

基于结构的蛋白质-RNA 结合亲和力预测模型。

A structure-based model for the prediction of protein-RNA binding affinity.

机构信息

Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

出版信息

RNA. 2019 Dec;25(12):1628-1645. doi: 10.1261/rna.071779.119. Epub 2019 Aug 8.

Abstract

Protein-RNA recognition is highly affinity-driven and regulates a wide array of cellular functions. In this study, we have curated a binding affinity data set of 40 protein-RNA complexes, for which at least one unbound partner is available in the docking benchmark. The data set covers a wide affinity range of eight orders of magnitude as well as four different structural classes. On average, we find the complexes with single-stranded RNA have the highest affinity, whereas the complexes with the duplex RNA have the lowest. Nevertheless, free energy gain upon binding is the highest for the complexes with ribosomal proteins and the lowest for the complexes with tRNA with an average of -5.7 cal/mol/Å in the entire data set. We train regression models to predict the binding affinity from the structural and physicochemical parameters of protein-RNA interfaces. The best fit model with the lowest maximum error is provided with three interface parameters: relative hydrophobicity, conformational change upon binding and relative hydration pattern. This model has been used for predicting the binding affinity on a test data set, generated using mutated structures of yeast aspartyl-tRNA synthetase, for which experimentally determined Δ values of 40 mutations are available. The predicted Δ values highly correlate with the experimental observations. The data set provided in this study should be useful for further development of the binding affinity prediction methods. Moreover, the model developed in this study enhances our understanding on the structural basis of protein-RNA binding affinity and provides a platform to engineer protein-RNA interfaces with desired affinity.

摘要

蛋白质与 RNA 的识别高度依赖亲和力,并调节广泛的细胞功能。在这项研究中,我们整理了 40 个蛋白质与 RNA 复合物的结合亲和力数据集,其中至少有一个未结合的伙伴可在对接基准测试中获得。该数据集涵盖了八个数量级的广泛亲和力范围以及四个不同的结构类别。平均而言,我们发现与单链 RNA 结合的复合物具有最高的亲和力,而与双链 RNA 结合的复合物具有最低的亲和力。然而,结合后自由能的增益对于核糖体蛋白复合物最高,而 tRNA 复合物最低,整个数据集的平均为-5.7 cal/mol/Å。我们训练回归模型,从蛋白质-RNA 界面的结构和物理化学参数预测结合亲和力。提供具有最低最大误差的最佳拟合模型,其中包括三个界面参数:相对疏水性、结合时的构象变化和相对水合模式。该模型已用于预测使用酵母天冬氨酰-tRNA 合成酶突变结构生成的测试数据集上的结合亲和力,对于这些结构,有 40 个突变的实验确定的Δ值可用。预测的Δ值与实验观察结果高度相关。本研究中提供的数据集应该对进一步开发结合亲和力预测方法有用。此外,本研究中开发的模型增强了我们对蛋白质与 RNA 结合亲和力的结构基础的理解,并为设计具有所需亲和力的蛋白质-RNA 界面提供了一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8207/6859855/2044442b743f/1628f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验