CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei 230026 , Anhui , China.
Department of Oncology , The First Affiliated Hospital of University of Science and Technology of China , Hefei 230001 , Anhui , China.
ACS Appl Mater Interfaces. 2019 Sep 4;11(35):31681-31692. doi: 10.1021/acsami.9b10950. Epub 2019 Aug 21.
In situ modulation of the surface properties on the micellar drug delivery nanocarriers offers an efficient method to improve the drug delivery efficiency into cells while maintaining stealth and stability during blood circulation. Light has been demonstrated to be a temporally and spatially controllable tool to improve cellular internalization of nanoparticles. Herein, we develop reactive oxygen species (ROS)-responsive mixed polymeric micelles with photoinduced exposure of cell-penetrating moieties via photodynamic ROS production, which can facilitate cellular internalization of paclitaxel (PTX) and chlorin e6 (Ce6)-coloaded micelles for the synergistic effect of photodynamic and chemotherapy. The thioketal-bond-linked block polymers poly(ε-caprolactone)-TL-poly(,-dimethylacrylamide) (PCL-TL-PDMA) with a long PDMA block are used to self-assemble into mixed micelles with PCL--poly(2-guanidinoethyl methacrylate) (PCL-PGEMA) consisting of a short PGEMA block, which are further used to coencapsulate PTX and Ce6. After intravenous injection, prolonged blood circulation of the micelles guarantees high tumor accumulation. Upon irradiation by 660 nm light, ROS production of the micelles by Ce6 induces cleavage of PDMA to expose PGEMA shells for significantly improved cellular internalization. The combination of photodynamic therapy and chemotherapy inside the tumor cells achieves improved antitumor efficacy. The design of ROS-responsive mixed polymeric nanocarriers represents a novel and efficient approach to realize both long blood circulation and high-efficiency cellular internalization for combined photodynamic and chemotherapy under light irradiation.
在胶束药物递送纳米载体的表面性质进行原位调节为提高药物向细胞内传递效率提供了一种有效方法,同时在血液循环过程中保持其隐身性和稳定性。光已被证明是一种可在时间和空间上控制的工具,可提高纳米颗粒的细胞内化效率。在此,我们开发了具有活性氧(ROS)响应性的混合聚合物胶束,通过光动力 ROS 产生来光诱导穿透细胞部分的暴露,这可以促进紫杉醇(PTX)和氯己定(Ce6)共载胶束的细胞内化,以实现光动力和化学疗法的协同作用。具有长 PDMA 嵌段的硫缩酮键连接的嵌段共聚物聚(ε-己内酯)-TL-聚(-二甲基丙烯酰胺)(PCL-TL-PDMA)与由短 PGEMA 嵌段组成的 PCL--聚(2-胍基乙基甲基丙烯酸酯)(PCL-PGEMA)自组装成混合胶束,进一步用于共包封 PTX 和 Ce6。静脉注射后,胶束的长时间血液循环保证了高肿瘤积累。在 660nm 光照射下,Ce6 产生的 ROS 引发 PDMA 的裂解以暴露 PGEMA 壳,从而显著提高细胞内化效率。肿瘤细胞内的光动力疗法和化学疗法的结合实现了抗肿瘤疗效的提高。ROS 响应性混合聚合物纳米载体的设计代表了一种新的有效方法,可实现在光照射下联合光动力和化学疗法的长血液循环和高效细胞内化。