文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

刺激响应型纳米医学用于疾病的诊断和治疗。

Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment.

机构信息

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.

出版信息

Int J Mol Sci. 2020 Sep 2;21(17):6380. doi: 10.3390/ijms21176380.


DOI:10.3390/ijms21176380
PMID:32887466
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7504550/
Abstract

Stimulus-responsive drug delivery systems generally aim to release the active pharmaceutical ingredient (API) in response to specific conditions and have recently been explored for disease treatments. These approaches can also be extended to molecular imaging to report on disease diagnosis and management. The stimuli used for activation are based on differences between the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide variety of stimulus-responsive systems have been developed-responsive to both a single stimulus or multiple stimuli-and represent a theranostic tool for disease treatment. In this review, stimuli commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis on chemical structure and property relationships is provided, aiming to focus on insights for the design of stimulus-responsive delivery systems. Several examples of theranostic applications of these stimulus-responsive nanomedicines are discussed.

摘要

刺激响应型药物递送系统通常旨在响应特定条件释放活性药物成分 (API),最近已被探索用于疾病治疗。这些方法也可以扩展到分子成像,以报告疾病的诊断和管理。用于激活的刺激基于疾病或靶向部位与正常组织之间的环境差异。内源性刺激包括 pH 值、氧化还原反应、酶活性、温度等。外源性靶向刺激包括使用磁场、光、超声等。这些内源性或外源性刺激导致货物载体的结构变化或裂解,从而释放 API。已经开发了各种各样的刺激响应系统——响应单一刺激或多种刺激——并代表了疾病治疗的治疗诊断工具。在这篇综述中,列举了开发治疗诊断纳米平台中常用的刺激。强调了化学结构和性质关系,旨在为刺激响应型递药系统的设计提供见解。讨论了这些刺激响应型纳米药物的一些治疗诊断应用实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/76a751022463/ijms-21-06380-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/647b2d537e65/ijms-21-06380-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/1f6c7e4dc27e/ijms-21-06380-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/56286ab902af/ijms-21-06380-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/af5115ec40c8/ijms-21-06380-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/9377e431b2a9/ijms-21-06380-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/d864dd494a1d/ijms-21-06380-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/69959d242709/ijms-21-06380-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/06cb5cc3bfd4/ijms-21-06380-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/d893d9fdb67d/ijms-21-06380-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/6c621e6e5fb3/ijms-21-06380-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/3343e5b361bd/ijms-21-06380-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/69312934b108/ijms-21-06380-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/a30e6670152a/ijms-21-06380-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/76a751022463/ijms-21-06380-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/647b2d537e65/ijms-21-06380-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/1f6c7e4dc27e/ijms-21-06380-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/56286ab902af/ijms-21-06380-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/af5115ec40c8/ijms-21-06380-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/9377e431b2a9/ijms-21-06380-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/d864dd494a1d/ijms-21-06380-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/69959d242709/ijms-21-06380-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/06cb5cc3bfd4/ijms-21-06380-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/d893d9fdb67d/ijms-21-06380-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/6c621e6e5fb3/ijms-21-06380-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/3343e5b361bd/ijms-21-06380-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/69312934b108/ijms-21-06380-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/a30e6670152a/ijms-21-06380-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a9/7504550/76a751022463/ijms-21-06380-g014.jpg

相似文献

[1]
Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment.

Int J Mol Sci. 2020-9-2

[2]
Stimulus-responsive targeted nanomicelles for effective cancer therapy.

Nanomedicine (Lond). 2009-8

[3]
Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review.

Int J Biol Macromol. 2024-3

[4]
Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

Biomaterials. 2013-2-14

[5]
Recent Development of pH-Responsive Polymers for Cancer Nanomedicine.

Molecules. 2018-12-20

[6]
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.

Chem Soc Rev. 2016-3-7

[7]
Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy.

Biomaterials. 2022-12

[8]
Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications.

Adv Drug Deliv Rev. 2012-2-11

[9]
Recent Advances in pH-Sensitive Polymeric Nanoparticles for Smart Drug Delivery in Cancer Therapy.

Curr Drug Targets. 2018-2-19

[10]
Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.

Chem Soc Rev. 2013-4-3

引用本文的文献

[1]
Nano-Based Drug Delivery Systems for Managing Diabetes: Recent Advances and Future Prospects.

Int J Nanomedicine. 2025-5-16

[2]
Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches.

Drug Deliv Transl Res. 2025-2-15

[3]
Controlled Stimulus-Responsive Delivery Systems for Osteoarthritis Treatment.

Int J Mol Sci. 2024-11-2

[4]
Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics.

Drug Deliv. 2024-12

[5]
Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review.

Nanoscale Adv. 2024-9-20

[6]
Synthesis and Physicochemical Properties of Thermally Sensitive Polymeric Derivatives of -vinylcaprolactam.

Polymers (Basel). 2024-7-5

[7]
pH-triggered dynamic erosive small molecule chlorambucil nano-prodrugs mediate robust oral chemotherapy.

Asian J Pharm Sci. 2023-7

[8]
Taking phototherapeutics from concept to clinical launch.

Nat Rev Chem. 2021-11

[9]
Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma.

Molecules. 2023-2-3

[10]
Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery.

Materials (Basel). 2022-9-18

本文引用的文献

[1]
Reactive Oxygen Species Synergistic pH/HO-Responsive Poly(l-lactic acid)--poly(sodium 4-styrenesulfonate)/Citrate-Fe(III)@ZIF-8 Hybrid Nanocomposites for Controlled Drug Release.

ACS Appl Bio Mater. 2019-8-19

[2]
Matrix Metalloproteinase-Responsive PEGylated Lipid Nanoparticles for Controlled Drug Delivery in the Treatment of Rheumatoid Arthritis.

ACS Appl Bio Mater. 2020-5-18

[3]
Acetal-Functionalized Pillar[5]arene: A pH-Responsive and Versatile Nanomaterial for the Delivery of Chemotherapeutic Agents.

ACS Appl Bio Mater. 2020-4-20

[4]
NIR-Responsive Copolymer Upconversion Nanocomposites for Triggered Drug Release in Vitro and in Vivo.

ACS Appl Bio Mater. 2019-1-22

[5]
Dual Stimuli-Responsive Nanoparticle-Incorporated Hydrogels as an Oral Insulin Carrier for Intestine-Targeted Delivery and Enhanced Paracellular Permeation.

ACS Biomater Sci Eng. 2018-8-13

[6]
Polymeric persulfide prodrugs: Mitigating oxidative stress through controlled delivery of reactive sulfur species.

ACS Macro Lett. 2020-4-21

[7]
Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer.

Colloids Surf B Biointerfaces. 2020-9

[8]
Glutathione-responsive nanoscale MOFs for effective intracellular delivery of the anticancer drug 6-mercaptopurine.

Chem Commun (Camb). 2020-6-14

[9]
pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery.

J Agric Food Chem. 2020-5-6

[10]
ROS-Responsive Nanoparticles Formed from RGD-Epothilone B Conjugate for Targeted Cancer Therapy.

ACS Appl Mater Interfaces. 2020-4-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索