Suppr超能文献

过渡金属催化黄铁矿阴极助力超稳定的基于四电子反应的全固态锂电池。

Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries.

作者信息

Wan Hongli, Liu Gaozhan, Li Yanle, Weng Wei, Mwizerwa Jean Pierre, Tian Ziqi, Chen Liang, Yao Xiayin

机构信息

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China.

Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.

出版信息

ACS Nano. 2019 Aug 27;13(8):9551-9560. doi: 10.1021/acsnano.9b04538. Epub 2019 Aug 14.

Abstract

All-solid-state batteries can enable reversible four lithium ion storage for pyrite (FeS) at a cutoff voltage of 1.0-3.0 V. However, strain/stress concentration generating electrode pulverization and sluggish electrochemical reaction of lithium sulfide and sulfur will affect the long cycling stability of the battery. Through experiments and density functional theory (DFT) calculations, it is proved that nanostructure engineering and electronic conduction improvement with introduction of catalytic cobalt can effectively improve the electrochemical activity of FeS. The optimized loose structured CoFeS based all-solid-state lithium batteries show reversible capacities of 860.5, 797.7, 685.8, and 561.8 mAh g after five cycles at 100, 200, 500, and 1000 mA g, respectively, and a stable capacity of 543.5 mAh g can be maintained after cycling at a current density of 500 mA g for 100 cycles. TEM and Raman results reveal that, after the first cycle, the reversible reaction 2LiS + Fe ↔ FeS + (2 - )S + 4Li + 4 proceeds from the following cycles onward, while nanocrystalline mackinawite FeS, Fe(III)-containing mackinawite FeS, and FeS are generated after the first discharge-charge process. This work provides a facile method for improving the electrochemical performance for multi-electron reaction mechanism based all-solid-state lithium batteries.

摘要

全固态电池能够在1.0 - 3.0 V的截止电压下实现黄铁矿(FeS)可逆存储四个锂离子。然而,应变/应力集中导致电极粉化以及硫化锂和硫的电化学反应迟缓,会影响电池的长循环稳定性。通过实验和密度泛函理论(DFT)计算证明,引入催化钴进行纳米结构工程和改善电子传导,能够有效提高FeS的电化学活性。优化后的基于疏松结构CoFeS的全固态锂电池在100、200、500和1000 mA g下循环五次后,可逆容量分别为860.5、797.7、685.8和561.8 mAh g,在500 mA g的电流密度下循环100次后,可保持543.5 mAh g的稳定容量。透射电子显微镜(TEM)和拉曼光谱结果表明,在第一次循环后,从后续循环开始发生可逆反应2LiS + Fe ↔ FeS + (2 - )S + 4Li + 4,而在第一次充放电过程后会生成纳米晶马基诺矿FeS、含Fe(III)的马基诺矿FeS和FeS。这项工作为改善基于多电子反应机制的全固态锂电池的电化学性能提供了一种简便方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验