De Santis Matteo, Rampino Sergio, Storchi Loriano, Belpassi Leonardo, Tarantelli Francesco
Dipartimento di Chimica, Biologia e Biotecnologie , Università degli Studi di Perugia , Via Elce di Sotto 8 , 06123 Perugia , Italy.
Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie , Università degli Studi di Perugia , Via Elce di Sotto 8 , 06123 Perugia , Italy.
Inorg Chem. 2019 Sep 3;58(17):11716-11729. doi: 10.1021/acs.inorgchem.9b01694. Epub 2019 Aug 9.
We present a four-component relativistic density functional theory study of the chemical bond and s-d hybridization in the group 11 cyanides M-CN (M = Cu, Ag, and Au). The analysis is carried out within the charge-displacement/natural orbital for chemical valence (CD-NOCV) scheme, which allows us to single out meaningful contributions to the total charge rearrangement that arises upon bond formation and to quantify the components of the Dewar-Chatt-Duncanson bonding model (the ligand-to-metal donation and metal-to-ligand back-donation). The M-CN bond is characterized by a large donation from the cyanide ion to the metal cation and by two small back-donation components from the metal toward the cyanide anion. The case of gold cyanide elucidates the peculiar role of the relativistic effects in determining the characteristics of the Au-C bond with respect to the copper and silver homologues. In AuCN, the donation and back-donation components are significantly enhanced, and the spin-orbit coupling, removing the degeneracy of the 5d atomic orbitals, induces a substantial split in the back-donation components. A simple spatial analysis of the NOCV-pair density, related to the ligand-to-metal donation component, allows us to quantify, with unprecedented accuracy, the charge rearrangement due to the s-d hybridization occurring at the metal site. The s-d hybridization plays a key role in determining the shape and size of the metal; it removes electron density from the bond axis and induces a significant flattening at the metal site in the position trans to the ligand. The s-d hybridization is present in all noble metal complexes, influencing the bond distances, and its effect is enhanced for Au, which is consistent with the preference of gold to form linear complexes. A comparative investigation of simple complexes [AuL] of Au with different ligands (L = F, -heterocyclic carbene, CO, and PH) shows that the s-d hybridization mechanism is also influenced by the nature of the ligand.
我们对第11族氰化物M-CN(M = Cu、Ag和Au)中的化学键和s-d杂化进行了四分量相对论密度泛函理论研究。分析是在电荷位移/化学价自然轨道(CD-NOCV)方案内进行的,这使我们能够挑出对成键时出现的总电荷重排有意义的贡献,并量化杜瓦-查特-邓坎森键合模型的组成部分(配体到金属的给予和金属到配体的反馈)。M-CN键的特征是氰离子向金属阳离子有大量给予,以及金属向氰阴离子有两个小的反馈分量。氰化金的情况阐明了相对论效应在确定Au-C键相对于铜和银同系物的特性方面的特殊作用。在AuCN中,给予和反馈分量显著增强,自旋-轨道耦合消除了5d原子轨道的简并性,导致反馈分量出现实质性分裂。对与配体到金属给予分量相关的NOCV对密度进行简单的空间分析,使我们能够以前所未有的精度量化由于金属位点处发生的s-d杂化引起的电荷重排。s-d杂化在确定金属的形状和大小时起关键作用;它从键轴去除电子密度,并在与配体相对的位置的金属位点处引起显著的扁平化。s-d杂化存在于所有贵金属配合物中,影响键长,并且其效应在Au中增强,这与金形成线性配合物的偏好一致。对Au与不同配体(L = F、-杂环卡宾、CO和PH)形成的简单配合物[AuL]的比较研究表明,s-d杂化机制也受配体性质的影响。