IEEE Trans Neural Syst Rehabil Eng. 2019 Sep;27(9):1824-1835. doi: 10.1109/TNSRE.2019.2934097. Epub 2019 Aug 8.
In this paper, we propose a machine learning-based virtual physical therapist (PT) system to enable personalized remote training for patients with Parkinson's disease (PD). Three physical therapy tasks with multiple difficulty levels are selected to help patients with PD improve balance and mobility. Patients' movements are captured by a Kinect sensor. Criteria for each task are carefully designed by our PT co-author such that the patient's performance can be evaluated in an automated manner. Given the patient's motion data, we propose a two-phase human action understanding algorithm TPHAU to understand the patient's movements, and an error identification model to identify the patient's movement errors. To enable automated task recommendation, a machine learning-based model is trained from real patient and PT data to provide accurate, personalized, and timely task update recommendation for patients with PD, thereby emulating a real PT's behavior. Real patient data have been collected in the clinic to train the models. Experiments show that the proposed methods achieve high accuracy in patient action understanding, error identification and task recommendation. The proposed virtual PT system has the potential of enabling on-demand virtual care and significantly reducing cost for both patients and care providers.
在本文中,我们提出了一种基于机器学习的虚拟物理治疗师(PT)系统,以实现帕金森病(PD)患者的个性化远程训练。选择了三个具有多个难度级别的物理治疗任务,以帮助 PD 患者改善平衡和移动能力。患者的运动由 Kinect 传感器捕捉。我们的 PT 合著者精心设计了每个任务的标准,以便可以自动评估患者的表现。根据患者的运动数据,我们提出了一种两阶段人体动作理解算法 TPHAU 来理解患者的动作,并提出了一种错误识别模型来识别患者的动作错误。为了实现自动化任务推荐,我们从真实患者和 PT 数据中训练了基于机器学习的模型,为 PD 患者提供准确、个性化和及时的任务更新推荐,从而模拟真实 PT 的行为。已经在诊所中收集了真实患者数据来训练模型。实验表明,所提出的方法在患者动作理解、错误识别和任务推荐方面具有很高的准确性。所提出的虚拟 PT 系统具有实现按需虚拟护理的潜力,并可显著降低患者和护理提供者的成本。