IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):973-984. doi: 10.1109/TCBB.2019.2933205. Epub 2021 Jun 3.
MicroRNAs play an important role in controlling drug sensitivity and resistance in cancer. Identification of responsible miRNAs for drug resistance can enhance the effectiveness of treatment. A new set theoretic entropy measure (SPEM) is defined to determine the relevance and level of confidence of miRNAs in deciding their drug resistant nature. Here, a pattern is represented by a pair of values. One of them implies the degree of its belongingness (fuzzy membership) to a class and the other represents the actual class of origin (crisp membership). A measure, called granular probability, is defined that determines the confidence level of having a particular pair of membership values. The granules used to compute the said probability are formed by a histogram based method where each bin of a histogram is considered as one granule. The width and number of the bins are automatically determined by the algorithm. The set thus defined, comprising a pair of membership values and the confidence level for having them, is used for the computation of SPEM and thereby identifying the drug resistant miRNAs. The efficiency of SPEM is demonstrated extensively on six data sets. While the achieved F-score in classifying sensitive and resistant samples ranges between 0.31 & 0.50 using all the miRNAs by SVM classifier, the same score varies from 0.67 to 0.94 using only the top 1 percent drug resistant miRNAs. Superiority of the proposed method as compared to some existing ones is established in terms of F-score. The significance of the top 1 percent miRNAs in corresponding cancer is also verified by the different articles based on biological investigations. Source code of SPEM is available at http://www.jayanta.droppages.com/SPEM.html.
MicroRNAs 在控制癌症药物敏感性和耐药性方面发挥着重要作用。确定导致耐药性的负责 miRNA 可以提高治疗效果。定义了一种新的集合论熵测度(SPEM)来确定 miRNA 在决定其耐药性质方面的相关性和置信度水平。这里,模式由一对值表示。其中一个表示其属于某个类别的程度(模糊隶属度),另一个表示其实际来源类别的隶属度(清晰隶属度)。定义了一个称为粒度概率的测度,用于确定具有特定隶属值对的置信水平。用于计算所述概率的粒度是通过基于直方图的方法形成的,其中直方图的每个箱被视为一个粒度。箱的宽度和数量由算法自动确定。由此定义的集合,包括一对隶属度值和具有它们的置信度水平,用于计算 SPEM,并由此识别耐药 miRNA。在六个数据集上广泛证明了 SPEM 的效率。虽然使用 SVM 分类器使用所有 miRNA 对敏感和耐药样本进行分类的 F-score 范围在 0.31 到 0.50 之间,但使用仅前 1%耐药 miRNA 的相同分数从 0.67 到 0.94 变化。在 F-score 方面,与一些现有方法相比,提出的方法具有优越性。基于生物研究的不同文章还验证了相应癌症中前 1%miRNA 的重要性。SPEM 的源代码可在 http://www.jayanta.droppages.com/SPEM.html 获得。