Suppr超能文献

间歇离散观测控制在随机神经网络同步中的应用。

Intermittent Discrete Observation Control for Synchronization of Stochastic Neural Networks.

出版信息

IEEE Trans Cybern. 2020 Jun;50(6):2414-2424. doi: 10.1109/TCYB.2019.2930579. Epub 2019 Aug 7.

Abstract

In this paper, to investigate the exponential synchronization of stochastic neural networks, a new periodically intermittent discrete observation control (PIDOC) is first proposed. Different from the existing periodically intermittent control, our control in control time is feedback control based on discrete-time state observations (FCDSOs) instead of a continuous-time one. By employing the Lyapunov method, graph theory, and theory of differential inclusions, the exponential synchronization of stochastic neural networks with a discontinuous right-hand side is realized by PIDOC and some sufficient conditions are presented. Especially, when control width tends to control period, PIDOC will be reduced to a general FCDSO and we give some detailed discussions. Then, we provide some corollaries about synchronization in mean square, asymptotical synchronization in mean square, and exponential synchronization of stochastic neural networks under FCDSO. Finally, some numerical simulations are provided to demonstrate our analytical results.

摘要

在本文中,为了研究随机神经网络的指数同步,首先提出了一种新的周期间断离散观测控制(PIDOC)。与现有的周期间断控制不同,我们的控制时间是基于离散时间状态观测(FCDSOs)的反馈控制,而不是连续时间的控制。通过使用 Lyapunov 方法、图论和微分包含理论,通过 PIDOC 实现了具有不连续右手边的随机神经网络的指数同步,并提出了一些充分条件。特别是,当控制宽度趋于控制周期时,PIDOC 将简化为一般的 FCDSO,我们给出了一些详细的讨论。然后,我们给出了关于随机神经网络在 FCDSO 下的均方同步、均方渐近同步和指数同步的一些推论。最后,提供了一些数值模拟结果来验证我们的分析结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验