Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia.
The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada.
Neuro Oncol. 2020 Jan 11;22(1):139-151. doi: 10.1093/neuonc/noz140.
Despite increased understanding of the genetic events underlying pediatric high-grade gliomas (pHGGs), therapeutic progress is static, with poor understanding of nongenomic drivers. We therefore investigated the role of alterations in mitochondrial function and developed an effective combination therapy against pHGGs.
Mitochondrial DNA (mtDNA) copy number was measured in a cohort of 60 pHGGs. The implication of mtDNA alteration in pHGG tumorigenesis was studied and followed by an efficacy investigation using patient-derived cultures and orthotopic xenografts.
Average mtDNA content was significantly lower in tumors versus normal brains. Decreasing mtDNA copy number in normal human astrocytes led to a markedly increased tumorigenicity in vivo. Depletion of mtDNA in pHGG cells promoted cell migration and invasion and therapeutic resistance. Shifting glucose metabolism from glycolysis to mitochondrial oxidation with the adenosine monophosphate-activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) or the pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA) significantly inhibited pHGG viability. Using DCA to shift glucose metabolism to mitochondrial oxidation and then metformin to simultaneously target mitochondrial function disrupted energy homeostasis of tumor cells, increasing DNA damage and apoptosis. The triple combination with radiation therapy, DCA and metformin led to a more potent therapeutic effect in vitro and in vivo.
Our results suggest metabolic alterations as an onco-requisite factor of pHGG tumorigenesis. Targeting reduced mtDNA quantity represents a promising therapeutic strategy for pHGG.
尽管人们对小儿高级别胶质瘤(pHGG)的遗传事件有了更多的了解,但治疗进展却停滞不前,对非基因组驱动因素的了解甚少。因此,我们研究了线粒体功能改变的作用,并开发了一种针对 pHGG 的有效联合治疗方法。
测量了 60 例 pHGG 中的线粒体 DNA(mtDNA)拷贝数。研究了 mtDNA 改变在 pHGG 肿瘤发生中的作用,并随后使用患者来源的培养物和原位异种移植进行了疗效研究。
与正常大脑相比,肿瘤中的平均 mtDNA 含量明显降低。正常人类星形胶质细胞中 mtDNA 拷贝数的减少导致体内肿瘤形成能力显著增加。pHGG 细胞中线粒体 DNA 的耗竭促进了细胞迁移和侵袭以及治疗耐药性。用腺苷一磷酸激活蛋白激酶激活剂 AICAR(5-氨基咪唑-4-羧酰胺核苷酸)或丙酮酸脱氢酶激酶抑制剂二氯乙酸(DCA)将葡萄糖代谢从糖酵解转变为线粒体氧化,可显著抑制 pHGG 的活力。使用 DCA 将葡萄糖代谢转变为线粒体氧化,然后用二甲双胍同时靶向线粒体功能,破坏肿瘤细胞的能量稳态,增加 DNA 损伤和细胞凋亡。与放射治疗、DCA 和二甲双胍的三联治疗在体外和体内都产生了更强的治疗效果。
我们的研究结果表明代谢改变是 pHGG 肿瘤发生的一个必需因素。靶向减少的 mtDNA 数量代表了 pHGG 的一种很有前途的治疗策略。