Yang Juan, Hao Jingyi, Xu Siyu, Wang Qi, Dai Jun, Zhang Anchao, Pang Xinchang
Institute of Applied Chemistry, College of Chemistry and Chemical Engineering , Henan Polytechnic University , Jiaozuo 454003 , P.R. China.
School of Environmental Science and Engineering , Zhejiang Gongshang University , Hangzhou 310018 , P.R. China.
ACS Appl Mater Interfaces. 2019 Sep 4;11(35):32025-32037. doi: 10.1021/acsami.9b10758. Epub 2019 Aug 21.
Photocatalytic CO reduction to solar fuel is a promising route to alleviate the ever-growing energy crisis and global warming. Herein, to enhance photoconversion efficiency of CO reduction, a series of direct Z-scheme composites consisting of β-AgVO nanoribbons and InVO nanoparticles (InVO/β-AgVO) are prepared via a facile hydrothermal method and subsequent in situ growth process. The prepared InVO/β-AgVO composites exhibit enhanced photocatalytic activity for reduction of CO to CO under visible-light illumination. A CO evolution rate of 12.61 μmol·g·h is achieved over the optimized 20% In-Ag without any cocatalyst or sacrificial agent, which is 11 times larger than that yielded by pure InVO (1.12 μmol·g·h). Moreover, the CO selectivity is more than 93% over H production from the side reaction of HO reduction. Significantly, based on the results of electron spin resonance (ESR) and in situ irradiated XPS tests, it is proposed that the synthesized InVO/β-AgVO catalysts comply with the direct Z-scheme transfer mechanism. Significantly improved photocatalytic activities for selective CO reduction could be primarily ascribed to effective separation of photoinduced electron-hole pairs and enhanced reducibility of photoelectrons at the conduction band of InVO. This work provides a new insight for constructing highly efficient photocatalytic CO reduction systems toward solar fuel generation.
光催化将CO还原为太阳能燃料是缓解日益严重的能源危机和全球变暖的一条有前景的途径。在此,为了提高CO还原的光转换效率,通过简便的水热法和随后的原位生长过程制备了一系列由β-AgVO纳米带和InVO纳米颗粒组成的直接Z型复合材料(InVO/β-AgVO)。所制备的InVO/β-AgVO复合材料在可见光照射下对将CO还原为CO表现出增强的光催化活性。在没有任何助催化剂或牺牲剂的情况下,优化后的20%In-Ag的CO析出速率达到12.61 μmol·g⁻¹·h,这比纯InVO(1.12 μmol·g⁻¹·h)产生的速率大11倍。此外,相对于由HO还原的副反应产生H而言,CO选择性超过93%。重要的是,基于电子自旋共振(ESR)和原位辐照XPS测试结果,提出合成的InVO/β-AgVO催化剂符合直接Z型转移机制。选择性CO还原的光催化活性显著提高主要归因于光生电子-空穴对的有效分离以及InVO导带处光电子还原能力的增强。这项工作为构建用于太阳能燃料生成的高效光催化CO还原系统提供了新的见解。