School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
Metabolic Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
Microb Pathog. 2019 Oct;135:103658. doi: 10.1016/j.micpath.2019.103658. Epub 2019 Aug 6.
The increasing resistance of Pseudomonas aeruginosa towards antimicrobial agents has been a major cause for the escalation of untreatable diabetic foot ulcer cases around the globe. This demands research towards alternative natural products that inhibit biofilm formation by P. aeruginosa. The study focuses on enhancing as well as understanding the anti-biofilm property of lutein from Chlorella pyrenoidosa against MTCC strain of P. aeruginosa PAO1. C. pyrenoidosa was subjected to nutrient starvation (N, S and P) and their growth, biomass, chlorophyll pigments and total carotenoids were estimated. Lutein extracted from nutrient starved C. pyrenoidosa were quantified using High Performance Liquid Chromatography (HPLC) and also used for quantification of biofilm formation, cell surface hydrophobicity (CSH), extracellular polymeric substances (EPS) and pyocyanin degradation. The results showed 20 μg/mL concentration of lutein showed maximum inhibition and degradation of biofilm formation, pyocyanin production, Cell Surface Hydrophobicity Extracellular Polymeric Substances, when compared to other concentrations. Azithromycin was used as a standard drug to compare the efficiency of lutein as a potential antibiofilm compound. Docking studies confirmed the interaction of lutein with the four proteins - LasI, LasR, RhlI and RhlR, involved in the quorum sensing mechanism during biofilm formation. Among them, RhlI protein was found to strongly interact and LasI exhibiting the least interaction with lutein. Gene expression analyses of las and rhl genes in P. aeruginosa PAO1 revealed a significant down regulation of both the genes in the cultures treated with different concentrations of lutein. Therefore, it can be understood that lutein is an effective antibiofilm agent and can be used in combination with generic drugs that are used for treating diseases such as diabetic foot ulcers, which are ineffective due to high biofilm forming capability of P. aeruginosa and other bacterial species.
铜绿假单胞菌对抗生素的耐药性不断增强,是导致全球无法治愈的糖尿病足溃疡病例不断增加的主要原因。因此,人们需要研究替代天然产物来抑制铜绿假单胞菌生物膜的形成。本研究专注于增强和了解来自蛋白核小球藻的叶黄素对铜绿假单胞菌 MTCC 株 PAO1 的抗生物膜特性。对蛋白核小球藻进行营养饥饿(N、S 和 P)处理,并对其生长、生物量、叶绿素色素和总类胡萝卜素进行了估计。使用高效液相色谱法(HPLC)从营养饥饿的蛋白核小球藻中提取叶黄素,并用于定量生物膜形成、细胞表面疏水性(CSH)、细胞外聚合物物质(EPS)和绿脓菌素降解。结果表明,与其他浓度相比,20μg/mL 浓度的叶黄素显示出最大的抑制和降解生物膜形成、绿脓菌素产生、细胞表面疏水性、细胞外聚合物物质的作用。与其他浓度相比,20μg/mL 浓度的叶黄素显示出最大的抑制和降解生物膜形成、绿脓菌素产生、细胞表面疏水性、细胞外聚合物物质的作用。与其他浓度相比,20μg/mL 浓度的叶黄素显示出最大的抑制和降解生物膜形成、绿脓菌素产生、细胞表面疏水性、细胞外聚合物物质的作用。阿齐霉素被用作标准药物来比较叶黄素作为一种潜在的抗生物膜化合物的效率。对接研究证实了叶黄素与 LasI、LasR、RhlI 和 RhlR 这四个参与生物膜形成过程中的群体感应机制的蛋白质之间的相互作用。其中,RhlI 蛋白与叶黄素的相互作用最强,LasI 蛋白与叶黄素的相互作用最弱。铜绿假单胞菌 PAO1 中 las 和 rhl 基因的基因表达分析表明,用不同浓度的叶黄素处理的培养物中,这两个基因的表达均显著下调。因此,可以理解的是,叶黄素是一种有效的抗生物膜剂,可以与用于治疗糖尿病足溃疡等疾病的普通药物联合使用,这些药物由于铜绿假单胞菌和其他细菌物种的高生物膜形成能力而无效。