Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany; Institute of Biochemistry II, Jena University Hospital, Jena, Germany.
Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, Germany.
Biomaterials. 2019 Nov;220:119396. doi: 10.1016/j.biomaterials.2019.119396. Epub 2019 Aug 2.
Alterations of the microbial composition in the gut and the concomitant dysregulation of the mucosal immune response are associated with the pathogenesis of opportunistic infections, chronic inflammation, and inflammatory bowel disease. To create a platform for the investigation of the underlying mechanisms, we established a three-dimensional microphysiological model of the human intestine. This model resembles organotypic microanatomical structures and includes tissue resident innate immune cells exhibiting features of mucosal macrophages and dendritic cells. The model displays the physiological immune tolerance of the intestinal lumen to microbial-associated molecular patterns and can, therefore, be colonised with living microorganisms. Functional studies on microbial interaction between probiotic Lactobacillus rhamnosus and the opportunistic pathogen Candida albicans show that pre-colonization of the intestinal lumen of the model by L. rhamnosus reduces C. albicans-induced tissue damage, lowers its translocation, and limits fungal burden. We demonstrate that microbial interactions can be efficiently investigated using the in vitro model creating a more physiological and immunocompetent microenvironment. The intestinal model allows a detailed characterisation of the immune response, microbial pathogenicity mechanisms, and quantification of cellular dysfunction attributed to alterations in the microbial composition.
肠道微生物组成的改变以及随之而来的黏膜免疫反应失调与机会性感染、慢性炎症和炎症性肠病的发病机制有关。为了研究潜在机制,我们建立了一个三维的人类肠道微生理模型。该模型类似于器官型微解剖结构,包括组织固有免疫细胞,具有黏膜巨噬细胞和树突状细胞的特征。该模型显示了肠道腔对微生物相关分子模式的生理性免疫耐受,因此可以用活微生物定植。对益生菌鼠李糖乳杆菌和机会性病原体白念珠菌之间微生物相互作用的功能研究表明,L. rhamnosus 预先定植模型的肠道腔可减少 C. albicans 诱导的组织损伤,降低其易位,并限制真菌负荷。我们证明,使用体外模型可以有效地研究微生物相互作用,创造更生理和免疫相容的微环境。肠道模型允许对免疫反应、微生物致病性机制以及归因于微生物组成改变的细胞功能障碍进行详细表征。