Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Faculty of Liberal Arts & Professional Studies, Department of Geography, York University. Toronto, ON M3J 1P3, Canada.
Sci Total Environ. 2019 Dec 1;694:133684. doi: 10.1016/j.scitotenv.2019.133684. Epub 2019 Jul 30.
Paleolimnology uses sedimentary biomarkers as proxies to reconstruct long-term changes in environmental conditions from lake sediment cores. This work describes an untargeted metabolomics-based approach and uniquely applies it to the field of paleolimnology to identify novel sediment biomarkers to track long-term patterns in treeline dynamics. We identified new potential biomarkers across the Canadian northern Arctic, non-alpine, treeline using high-resolution accurate mass spectrometry, and pattern recognition analysis. This method was applied to 120 sediment core extracts from 14 boreal, 25 forest-tundra, and 21 tundra lakes to assess long-term fluctuations in treeline position. High resolution accurate mass spectrometry resolved many compounds from complex mixtures with low mass accuracy errors. This generated a large dataset that required metabolomics styled statistical analyses to identify potential biomarkers. In total, 29 potential biomarkers discriminated between boreal and tundra lakes. Tetrapyrrole-type phorbides and squalene derivatives dominated in boreal regions, while biohopane-type lipids were in the tundra regions. Tetrapyrroles were in both surface and subsurface sediments of boreal lakes indicating these compounds can survive long-term burial in sediments. At the ecozone level, tetrapyrroles were more abundant in boreal Taiga Shield, and Taiga Plains. Boreal plant extracts belonging to Pinaceae and Ericaceae also contained tetrapyrroles. Squalene derivatives demonstrated long-term preservation, but wider distribution than tetrapyrroles. Hopanoids were present in tundra and forest-tundra lake regions, specifically the Low Arctic and Taiga Shield, and were absent in all boreal lake sediments. Herein, we describe a method that can systematically identify new paleolimnological biomarkers. Novel biomarkers would facilitate multi-proxy paleolimnological studies and potentially lead to more accurate paleoenvironmental reconstructions.
古湖沼学利用沉积生物标志物作为示踪物,从湖泊沉积物岩芯中重建环境条件的长期变化。本工作描述了一种基于非靶向代谢组学的方法,并将其独特地应用于古湖沼学领域,以确定新的沉积生物标志物来追踪树线动态的长期变化模式。我们使用高分辨率精确质量质谱和模式识别分析,在加拿大北极北部、非高山、树线地区确定了新的潜在生物标志物。该方法应用于 120 个来自 14 个北方森林、25 个森林苔原和 21 个苔原湖泊的沉积物岩芯提取物,以评估树线位置的长期波动。高分辨率精确质量质谱能够以低质量精度误差解析复杂混合物中的许多化合物。这产生了一个需要代谢组学风格的统计分析来识别潜在生物标志物的大型数据集。总共有 29 种潜在的生物标志物可以区分北方森林和苔原湖泊。四吡咯型 phorbides 和角鲨烯衍生物在北方地区占主导地位,而生物藿烷型脂质则在苔原地区。四吡咯在北方湖泊的表层和底层沉积物中都有存在,表明这些化合物可以在沉积物中长期埋藏。在生态区水平上,四吡咯在北方泰加林盾地和泰加林平原中更为丰富。属于松科和石南科的北方植物提取物也含有四吡咯。角鲨烯衍生物表现出长期的保存性,但分布范围比四吡咯更广。藿烷类化合物存在于苔原和森林苔原湖泊地区,特别是在低北极和泰加林盾地,而在所有北方湖泊沉积物中都不存在。在此,我们描述了一种可以系统地识别新的古湖沼学生物标志物的方法。新的生物标志物将促进多代用古湖沼学研究,并有可能导致更准确的古环境重建。