Suppr超能文献

Hyper-G:一种用于手术患者血糖水平优化决策和管理的人工智能工具。

Hyper-G: An Artificial Intelligence Tool for Optimal Decision-Making and Management of Blood Glucose Levels in Surgery Patients.

作者信息

Nair Akira A, Velagapudi Mihir, Behara Lakshmana, Venigandla Ravitheja, Fong Christine T, Horibe Mayumi, Nair Bala G

机构信息

Lakeside High School, Seattle, Washington, United States.

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, United States.

出版信息

Methods Inf Med. 2019 Sep;58(2-03):79-85. doi: 10.1055/s-0039-1693731. Epub 2019 Aug 9.

Abstract

BACKGROUND

Hyperglycemia or high blood glucose during surgery is associated with poor postoperative outcome. Knowing in advance which patients may develop hyperglycemia allows optimal assignment of resources and earlier initiation of glucose management plan.

OBJECTIVE

To develop predictive models to estimate peak glucose levels in surgical patients and to implement the best performing model as a point-of-care clinical tool to assist the surgical team to optimally manage glucose levels.

METHODS

Using a large perioperative dataset (6,579 patients) of patient- and surgery-specific parameters, we developed and validated linear regression and machine learning models (random forest, extreme gradient boosting [Xg Boost], classification and regression trees [CART], and neural network) to predict the peak glucose levels during surgery. The model performances were compared in terms of mean absolute percentage error (MAPE), logarithm of the ratio of the predicted to actual value (log ratio), median prediction error, and interquartile error range. The best performing model was implemented as part of a web-based application for optimal decision-making toward glucose management during surgery.

RESULTS

Accuracy of the machine learning models were higher (MAPE = 17%, log ratio = 0.029 for Xg Boost) when compared with that of the linear regression model (MAPE = 22%, log ratio = 0.041). The Xg Boost model had the smallest median prediction error (5.4 mg/dL) and the narrowest interquartile error range (-17 to 24 mg/dL) as compared with the other models. The best performing model, Xg Boost, was implemented as a web application, Hyper-G, which the perioperative providers can use at the point of care to estimate peak glucose levels during surgery.

CONCLUSIONS

Machine learning models are able to accurately predict peak glucose levels during surgery. Implementation of such a model as a web-based application can facilitate optimal decision-making and advance planning of glucose management strategies.

摘要

背景

手术期间高血糖或血糖水平升高与术后不良结局相关。提前了解哪些患者可能发生高血糖,有助于优化资源分配并更早启动血糖管理计划。

目的

建立预测模型以估计手术患者的血糖峰值水平,并将性能最佳的模型作为床旁临床工具实施,以协助手术团队优化血糖水平管理。

方法

利用一个包含患者及手术特定参数的大型围手术期数据集(6579例患者),我们开发并验证了线性回归模型和机器学习模型(随机森林、极端梯度提升[Xg Boost]、分类与回归树[CART]以及神经网络),以预测手术期间的血糖峰值水平。从平均绝对百分比误差(MAPE)、预测值与实际值之比的对数(对数比)、中位数预测误差和四分位误差范围等方面对模型性能进行比较。性能最佳的模型作为基于网络的应用程序的一部分实施,用于手术期间血糖管理的最佳决策。

结果

与线性回归模型(MAPE = 22%,对数比 = 0.041)相比,机器学习模型的准确性更高(Xg Boost的MAPE = 17%,对数比 = 0.029)。与其他模型相比,Xg Boost模型的中位数预测误差最小(5.4mg/dL),四分位误差范围最窄(-17至24mg/dL)。性能最佳的模型Xg Boost作为网络应用程序Hyper - G实施,围手术期医护人员可在床旁使用该程序估计手术期间的血糖峰值水平。

结论

机器学习模型能够准确预测手术期间的血糖峰值水平。将此类模型作为基于网络的应用程序实施,可促进血糖管理策略的最佳决策和提前规划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验