Suppr超能文献

基于基本非侵入性健康检查、社会人口学特征和饮食信息预测糖尿病血糖的机器学习网络应用程序:案例研究

A Machine Learning Web App to Predict Diabetic Blood Glucose Based on a Basic Noninvasive Health Checkup, Sociodemographic Characteristics, and Dietary Information: Case Study.

作者信息

Sampa Masuda Begum, Biswas Topu, Rahman Md Siddikur, Aziz Nor Hidayati Binti Abdul, Hossain Md Nazmul, Aziz Nor Azlina Ab

机构信息

Center for Engineering Computational Intelligence, Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia.

Department of Computer Science and Engineering, Faculty of Science, Engineering and Technology, University of Science and Technology Chittagong, Chattogram, Bangladesh.

出版信息

JMIR Diabetes. 2023 Nov 24;8:e49113. doi: 10.2196/49113.

Abstract

BACKGROUND

Over the past few decades, diabetes has become a serious public health concern worldwide, particularly in Bangladesh. The advancement of artificial intelligence can be reaped in the prediction of blood glucose levels for better health management. However, the practical validity of machine learning (ML) techniques for predicting health parameters using data from low- and middle-income countries, such as Bangladesh, is very low. Specifically, Bangladesh lacks research using ML techniques to predict blood glucose levels based on basic noninvasive clinical measurements and dietary and sociodemographic information.

OBJECTIVE

To formulate strategies for public health planning and the control of diabetes, this study aimed to develop a personalized ML model that predicts the blood glucose level of urban corporate workers in Bangladesh.

METHODS

Based on the basic noninvasive health checkup test results, dietary information, and sociodemographic characteristics of 271 employees of the Bangladeshi Grameen Bank complex, 5 well-known ML models, namely, linear regression, boosted decision tree regression, neural network, decision forest regression, and Bayesian linear regression, were used to predict blood glucose levels. Continuous blood glucose data were used in this study to train the model, which then used the trained data to predict new blood glucose values.

RESULTS

Boosted decision tree regression demonstrated the greatest predictive performance of all evaluated models (root mean squared error=2.30). This means that, on average, our model's predicted blood glucose level deviated from the actual blood glucose level by around 2.30 mg/dL. The mean blood glucose value of the population studied was 128.02 mg/dL (SD 56.92), indicating a borderline result for the majority of the samples (normal value: 140 mg/dL). This suggests that the individuals should be monitoring their blood glucose levels regularly.

CONCLUSIONS

This ML-enabled web application for blood glucose prediction helps individuals to self-monitor their health condition. The application was developed with communities in remote areas of low- and middle-income countries, such as Bangladesh, in mind. These areas typically lack health facilities and have an insufficient number of qualified doctors and nurses. The web-based application is a simple, practical, and effective solution that can be adopted by the community. Use of the web application can save money on medical expenses, time, and health management expenses. The created system also aids in achieving the Sustainable Development Goals, particularly in ensuring that everyone in the community enjoys good health and well-being and lowering total morbidity and mortality.

摘要

背景

在过去几十年里,糖尿病已成为全球严重的公共卫生问题,在孟加拉国尤为如此。人工智能的进步可用于预测血糖水平,以实现更好的健康管理。然而,使用来自孟加拉国等低收入和中等收入国家的数据,通过机器学习(ML)技术预测健康参数的实际有效性非常低。具体而言,孟加拉国缺乏基于基本非侵入性临床测量以及饮食和社会人口统计学信息,运用ML技术预测血糖水平的研究。

目的

为制定公共卫生规划和糖尿病控制策略,本研究旨在开发一个个性化的ML模型,用于预测孟加拉国城市企业员工的血糖水平。

方法

基于孟加拉国格莱珉银行大楼271名员工的基本非侵入性健康检查测试结果、饮食信息和社会人口统计学特征,使用5种著名的ML模型,即线性回归、增强决策树回归、神经网络、决策森林回归和贝叶斯线性回归,来预测血糖水平。本研究使用连续血糖数据训练模型,然后模型利用训练数据预测新的血糖值。

结果

增强决策树回归在所有评估模型中表现出最大的预测性能(均方根误差=2.30)。这意味着,平均而言,我们模型预测的血糖水平与实际血糖水平的偏差约为2.30mg/dL。所研究人群的平均血糖值为128.02mg/dL(标准差56.92),这表明大多数样本处于临界值(正常值:140mg/dL)。这表明这些个体应定期监测血糖水平。

结论

这个基于ML的血糖预测网络应用程序有助于个人自我监测健康状况。该应用程序的开发考虑到了孟加拉国等低收入和中等收入国家偏远地区的社区。这些地区通常缺乏卫生设施,合格医生和护士数量不足。这个基于网络的应用程序是一种社区可以采用的简单、实用且有效的解决方案。使用该网络应用程序可以节省医疗费用、时间和健康管理费用。创建该系统还有助于实现可持续发展目标,特别是确保社区中的每个人都享有良好的健康和福祉,并降低总体发病率和死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a9e/10709789/8691119d1594/diabetes_v8i1e49113_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验