Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 425 S. Euclid Ave, BJC Institute of Health, Office: 9607, St. Louis, MO, 63110, USA.
Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
Alzheimers Res Ther. 2019 Aug 9;11(1):71. doi: 10.1186/s13195-019-0524-x.
Alzheimer's disease (AD) is the most common form of dementia. This neurodegenerative disorder is associated with neuronal death and gliosis heavily impacting the cerebral cortex. AD has a substantial but heterogeneous genetic component, presenting both Mendelian and complex genetic architectures. Using bulk RNA-seq from the parietal lobes and deconvolution methods, we previously reported that brains exhibiting different AD genetic architecture exhibit different cellular proportions. Here, we sought to directly investigate AD brain changes in cell proportion and gene expression using single-cell resolution.
We generated unsorted single-nuclei RNA sequencing data from brain tissue. We leveraged the tissue donated from a carrier of a Mendelian genetic mutation, PSEN1 p.A79V, and two family members who suffer from sporadic AD, but do not carry any autosomal mutations. We evaluated alternative alignment approaches to maximize the titer of reads, genes, and cells with high quality. In addition, we employed distinct clustering strategies to determine the best approach to identify cell clusters that reveal neuronal and glial cell types and avoid artifacts such as sample and batch effects. We propose an approach to cluster cells that reduces biases and enable further analyses.
We identified distinct types of neurons, both excitatory and inhibitory, and glial cells, including astrocytes, oligodendrocytes, and microglia, among others. In particular, we identified a reduced proportion of excitatory neurons in the Mendelian mutation carrier, but a similar distribution of inhibitory neurons. Furthermore, we investigated whether single-nuclei RNA-seq from the human brains recapitulate the expression profile of disease-associated microglia (DAM) discovered in mouse models. We also determined that when analyzing human single-nuclei data, it is critical to control for biases introduced by donor-specific expression profiles.
We propose a collection of best practices to generate a highly detailed molecular cell atlas of highly informative frozen tissue stored in brain banks. Importantly, we have developed a new web application to make this unique single-nuclei molecular atlas publicly available.
阿尔茨海默病(AD)是最常见的痴呆症形式。这种神经退行性疾病与神经元死亡和神经胶质细胞增生密切相关,严重影响大脑皮层。AD 具有大量但异质的遗传成分,表现出孟德尔和复杂的遗传结构。我们之前使用顶叶的批量 RNA-seq 和去卷积方法报告说,表现出不同 AD 遗传结构的大脑表现出不同的细胞比例。在这里,我们试图使用单细胞分辨率直接研究 AD 大脑在细胞比例和基因表达上的变化。
我们从脑组织中生成未分选的单细胞核 RNA 测序数据。我们利用来自携带孟德尔基因突变 PSEN1 p.A79V 的供体以及两名患有散发性 AD 但不携带任何常染色体突变的家族成员的组织。我们评估了替代的比对方法,以最大限度地提高高质量读数、基因和细胞的产量。此外,我们采用了不同的聚类策略来确定最佳方法来识别揭示神经元和神经胶质细胞类型的细胞簇,并避免样品和批次效应等伪影。我们提出了一种聚类细胞的方法,可以减少偏差并支持进一步的分析。
我们鉴定出了不同类型的神经元,包括兴奋性和抑制性神经元,以及神经胶质细胞,包括星形胶质细胞、少突胶质细胞和小胶质细胞等。特别是,我们发现孟德尔突变携带者中的兴奋性神经元比例降低,但抑制性神经元的分布相似。此外,我们研究了人类大脑的单细胞 RNA-seq 是否能重现在小鼠模型中发现的与疾病相关的小胶质细胞(DAM)的表达谱。我们还确定,在分析人类单细胞数据时,控制供体特异性表达谱引入的偏差至关重要。
我们提出了一系列最佳实践,以生成存储在脑库中的高度信息丰富的冷冻组织的高度详细的分子细胞图谱。重要的是,我们开发了一个新的网络应用程序,使这个独特的单细胞分子图谱可供公众使用。