Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA.
Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
Dis Model Mech. 2019 Sep 16;12(9):dmm040931. doi: 10.1242/dmm.040931.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer derived from the malignant transformation of T-cell progenitors. Outcomes remain poor for T-ALL patients who have either primary resistance to standard-of-care chemotherapy or disease relapse. Notably, there are currently no targeted therapies available in T-ALL. This lack of next-generation therapies highlights the need for relevant preclinical disease modeling to identify and validate new targets and treatment approaches. Here, we adapted a spontaneously arising, genetically heterogeneous, thymic transplantation-based murine model of T-ALL, recapitulating key histopathological and genetic features of the human disease, to the preclinical testing of targeted and immune-directed therapies. Genetic engineering of the murine locus aligned the spectrum of mutations in the mouse model to that of human T-ALL and confirmed aberrant, recombination-activating gene (RAG)-mediated 5' recombination events as the preferred pathway in murine T-ALL development. Testing of Notch1-targeting therapeutic antibodies demonstrated T-ALL sensitivity to different classes of Notch1 blockers based on Notch1 mutational status. In contrast, genetic ablation of Notch3 did not impact T-ALL development. The T-ALL model was further applied to the testing of immunotherapeutic agents in fully immunocompetent, syngeneic mice. In line with recent clinical experience in T-cell malignancies, programmed cell death 1 (PD-1) blockade alone lacked anti-tumor activity against murine T-ALL tumors. Overall, the unique features of the spontaneous T-ALL model coupled with genetic manipulations and the application to therapeutic testing in immunocompetent backgrounds will be of great utility for the preclinical evaluation of novel therapies against T-ALL.
T 细胞急性淋巴细胞白血病(T-ALL)是一种源自 T 细胞前体细胞恶性转化的侵袭性血液系统恶性肿瘤。对那些对标准护理化疗有原发性耐药或疾病复发的 T-ALL 患者,其预后仍然较差。值得注意的是,目前 T-ALL 没有靶向治疗方法。这种缺乏下一代治疗方法凸显了在 T-ALL 中进行相关临床前疾病建模以鉴定和验证新靶标和治疗方法的必要性。在这里,我们采用了一种自发发生的、遗传异质性的、基于胸腺移植的 T-ALL 小鼠模型,该模型重现了人类疾病的关键组织病理学和遗传特征,用于靶向和免疫导向治疗的临床前测试。小鼠 基因座的基因工程使小鼠模型中的 突变谱与人类 T-ALL 的突变谱相一致,并证实了异常的、重组激活基因(RAG)介导的 5' 重组事件是小鼠 T-ALL 发展的首选途径。对 Notch1 靶向治疗性抗体的测试表明,根据 Notch1 突变状态,T-ALL 对不同类别的 Notch1 阻滞剂敏感。相比之下,Notch3 的基因缺失并不影响 T-ALL 的发展。该 T-ALL 模型进一步应用于在完全免疫功能正常的同基因小鼠中测试免疫治疗药物。与 T 细胞恶性肿瘤的最新临床经验一致,程序性细胞死亡 1(PD-1)阻断单独对小鼠 T-ALL 肿瘤缺乏抗肿瘤活性。总体而言,自发 T-ALL 模型的独特特征加上基因操作以及在免疫功能正常背景下的治疗测试应用,将极大地有助于 T-ALL 新型治疗方法的临床前评估。