Suppr超能文献

多元荟萃分析的置换检验方法。

Permutation inference methods for multivariate meta-analysis.

机构信息

Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan.

Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo, Japan.

出版信息

Biometrics. 2020 Mar;76(1):337-347. doi: 10.1111/biom.13134. Epub 2019 Oct 14.

Abstract

Multivariate meta-analysis is gaining prominence in evidence synthesis research because it enables simultaneous synthesis of multiple correlated outcome data, and random-effects models have generally been used for addressing between-studies heterogeneities. However, coverage probabilities of confidence regions or intervals for standard inference methods for random-effects models (eg, restricted maximum likelihood estimation) cannot retain their nominal confidence levels in general, especially when the number of synthesized studies is small because their validities depend on large sample approximations. In this article, we provide permutation-based inference methods that enable exact joint inferences for average outcome measures without large sample approximations. We also provide accurate marginal inference methods under general settings of multivariate meta-analyses. We propose effective approaches for permutation inferences using optimal weighting based on the efficient score statistic. The effectiveness of the proposed methods is illustrated via applications to bivariate meta-analyses of diagnostic accuracy studies for airway eosinophilia in asthma and a network meta-analysis for antihypertensive drugs on incident diabetes, as well as through simulation experiments. In numerical evaluations performed via simulations, our methods generally provided accurate confidence regions or intervals under a broad range of settings, whereas the current standard inference methods exhibited serious undercoverage properties.

摘要

多元荟萃分析在证据综合研究中越来越受到重视,因为它能够同时综合多个相关的结局数据,并且通常使用随机效应模型来解决研究间的异质性。然而,随机效应模型的标准推断方法(例如,限制最大似然估计)的置信区间或置信区域的覆盖率概率通常不能保持其名义置信水平,特别是当合成研究的数量较少时,因为它们的有效性取决于大样本近似。在本文中,我们提供了基于置换的推断方法,这些方法可以在不进行大样本近似的情况下对平均结局指标进行精确的联合推断。我们还在一般的多元荟萃分析设置下提供了准确的边缘推断方法。我们提出了基于有效得分统计量的最优加权的置换推断的有效方法。通过对哮喘气道嗜酸性粒细胞的诊断准确性研究的二元荟萃分析和降压药物对新发糖尿病的网络荟萃分析的应用,以及通过模拟实验,说明了所提出方法的有效性。在通过模拟进行的数值评估中,我们的方法通常在广泛的设置下提供了准确的置信区间或置信区域,而当前的标准推断方法则表现出严重的低估性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验