Department of Data Science, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan.
Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
BMC Med Res Methodol. 2019 Feb 14;19(1):33. doi: 10.1186/s12874-019-0676-1.
Mixed effects models have been widely applied in clinical trials that involve longitudinal repeated measurements, which possibly contain missing outcome data. In meta-analysis of individual participant data (IPD) based on these longitudinal studies, joint synthesis of the regression coefficient parameters can improve efficiency, especially for explorations of effect modifiers that are useful to predict the response or lack of response to particular treatments.
In this article, we provide a valid and efficient two-step method for IPD meta-analyses using the mixed effects models that adequately addresses the between-studies heterogeneity using random effects models. The two-step method overcomes the practical difficulties of computations and modellings of the heterogeneity in the one-step method, and enables valid inference without loss of efficiency. We also show the two-step method can effectively circumvent the modellings of the between-studies heterogeneity of the variance-covariance parameters and provide valid and efficient estimators for the regression coefficient parameters, which are the primary objects of interests in the longitudinal studies. In addition, these methods can be easily implemented using standard statistical packages, and enable synthesis of IPD from different sources (e.g., from different platforms of clinical trial data sharing systems).
To assess the proposed method, we conducted simulation studies and also applied the method to an IPD meta-analysis of clinical trials for new generation antidepressants. Through the numerical studies, the validity and efficiency of the proposed method were demonstrated.
The two-step approach is an effective method for IPD meta-analyses of longitudinal clinical trials using mixed effects models. It can also effectively circumvent the modellings of the between-studies heterogeneity of the variance-covariance parameters, and enable efficient inferences for the regression coefficient parameters.
混合效应模型已广泛应用于涉及纵向重复测量的临床试验,这些试验可能包含缺失的结局数据。在基于这些纵向研究的个体参与者数据(IPD)荟萃分析中,联合综合回归系数参数可以提高效率,特别是对于探索可用于预测对特定治疗的反应或缺乏反应的效应修饰剂。
在本文中,我们提供了一种有效的两步法,用于使用混合效应模型进行 IPD 荟萃分析,该模型使用随机效应模型充分解决了研究间异质性。两步法克服了一步法中异质性计算和建模的实际困难,并且在不损失效率的情况下进行有效推断。我们还表明,两步法可以有效地规避协方差参数研究间异质性的建模,并为回归系数参数提供有效的估计量,这些参数是纵向研究中主要关注的对象。此外,这些方法可以使用标准统计软件包轻松实现,并能够综合来自不同来源的 IPD(例如,来自不同的临床试验数据共享系统平台)。
为了评估所提出的方法,我们进行了模拟研究,并将该方法应用于新一代抗抑郁药临床试验的 IPD 荟萃分析。通过数值研究,证明了所提出方法的有效性和效率。
两步法是使用混合效应模型进行 IPD 荟萃分析的有效方法。它还可以有效地规避协方差参数研究间异质性的建模,并能够对回归系数参数进行有效的推断。