Suppr超能文献

牛瘤胃中热力学控制的挥发性脂肪酸、氢气和甲烷产生的贝叶斯机理建模。

Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen.

机构信息

TI Food and Nutrition, PO Box 557, 6700 AN, Wageningen, the Netherlands; Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.

Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.

出版信息

J Theor Biol. 2019 Nov 7;480:150-165. doi: 10.1016/j.jtbi.2019.08.008. Epub 2019 Aug 8.

Abstract

Dynamic modeling of mechanisms driving volatile fatty acid and hydrogen production in the rumen microbial ecosystem contributes to the heuristic prediction of CH emissions from dairy cattle into the environment. Existing mathematical rumen models, however, lack the representation of these mechanisms. A dynamic mechanistic model was developed that simulates the thermodynamic control of hydrogen partial pressure ( [Formula: see text] ) on volatile fatty acid (VFA) fermentation pathways via the NAD to NADH ratio in fermentative microbes, and methanogenesis in the bovine rumen. This model is unique and closely aligns with principles of reaction kinetics and thermodynamics. Model state variables represent ruminal carbohydrate substrates, bacteria and protozoa, methanogens, and gaseous and dissolved fermentation end products. The model was extended with static equations to model the hindgut metabolism. Feed composition and twice daily feeding were used as model inputs. Model parameters were estimated to experimental data using a Bayesian calibration procedure, after which the uncertainty of the parameter distribution on the model output was assessed. The model predicted a marked peak in [Formula: see text] after feeding that rapidly declined in time. This peak in [Formula: see text] caused a decrease in NAD to NADH ratio followed by an increased propionate molar proportion at the expense of acetate molar proportion, and an increase in CH production that steadily decreased in time, although the magnitude of increase for CH emission was less than for [Formula: see text] . A global sensitivity analysis indicated that parameters that determine the fractional passage rate and NADH oxidation rate altogether explained 86% of the variation in predicted daily CH emission. Model evaluation indicated over-prediction of in vivo CH emissions shortly after feeding, whereas under-prediction was indicated at later times. The present rumen fermentation modeling effort uniquely provides the integration of the [Formula: see text] controlled NAD to NADH ratio for dynamically predicting metabolic pathways that yield VFA, H and CH.

摘要

动态模型可以模拟驱动瘤胃微生物生态系统中挥发性脂肪酸和氢气产生的机制,有助于启发式预测奶牛向环境中排放的 CH 量。然而,现有的数学瘤胃模型缺乏对这些机制的表示。本研究开发了一个动态机制模型,通过发酵微生物中的 NAD 到 NADH 比值模拟热力学控制氢分压 ([Formula: see text]) 对挥发性脂肪酸 (VFA) 发酵途径的影响,以及牛瘤胃中的甲烷生成。该模型是独特的,与反应动力学和热力学原理紧密一致。模型状态变量代表瘤胃碳水化合物底物、细菌和原生动物、产甲烷菌以及气态和溶解的发酵终产物。该模型通过静态方程进行扩展,以模拟后肠代谢。饲料组成和每日两次喂食作为模型输入。使用贝叶斯校准程序根据实验数据估计模型参数,然后评估参数分布对模型输出的不确定性。模型预测在喂食后 [Formula: see text] 迅速下降的时间内出现明显的峰值。[Formula: see text] 的峰值导致 NAD 到 NADH 比值下降,随后丙酸摩尔比例增加,而乙酸摩尔比例减少,CH 生成增加,尽管 CH 排放的增加幅度小于 [Formula: see text] 。全局敏感性分析表明,决定分数通过速率和 NADH 氧化速率的参数共同解释了预测的每日 CH 排放量变化的 86%。模型评估表明,在喂食后不久,体内 CH 排放量被高估,而在随后的时间里,CH 排放量被低估。本瘤胃发酵模拟研究独特地提供了动态预测产生 VFA、H 和 CH 的代谢途径的 [Formula: see text] 控制的 NAD 到 NADH 比值的整合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验