Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
Int J Parasitol. 2019 Sep;49(10):819-829. doi: 10.1016/j.ijpara.2019.05.010. Epub 2019 Aug 8.
Recent mitogenomic studies have exposed a gene order (GO) shared by two classes, four orders and 31 species ('common GO') within the flatworm subphylum Neodermata. There are two possible hypotheses for this phenomenon: convergent evolution (homoplasy) or shared ancestry (plesiomorphy). To test those, we conducted a meta-analysis on all available mitogenomes to infer the evolutionary history of GO in Neodermata. To improve the resolution, we added a newly sequenced mitogenome that exhibited the common GO, Euryhaliotrema johni (Ancyrocephalinae), to the dataset. Phylogenetic analyses conducted on two datasets (nucleotides of all 36 genes and amino acid sequences of 12 protein coding genes) and four algorithms (MrBayes, RAxML, IQ-TREE and PhyloBayes) produced topology instability towards the tips, so ancestral GO reconstructions were conducted using TreeREx and MLGO programs using all eight obtained topologies, plus three unique topologies from previous studies. The results consistently supported the second hypothesis, resolving the common GO as a plesiomorphic ancestral GO for Neodermata, Cestoda, Monopisthocotylea, Cestoda + Trematoda and Cestoda + Trematoda + Monopisthocotylea. This allowed us to trace the evolutionary GO scenarios from each common ancestor to its descendants amongst the Monogenea and Cestoda classes, and propose that the common GO was most likely retained throughout all of the common ancestors, leading to the extant species possessing the common GO. Neodermatan phylogeny inferred from GOs was largely incongruent with all 11 topologies described above, but it did support the mitogenomic dataset in resolving Polyopisthocotylea as the earliest neodermatan branch. Although highly derived GOs might be of some use in resolving isolated taxonomic and phylogenetic uncertainties, we conclude that, due to the discontinuous nature of their evolution, they tend to produce artefactual phylogenetic relationships, which makes them unsuitable for phylogenetic reconstruction in Neodermata. Wider and denser sampling of neodermatan mitogenomic sequences will be needed to infer the evolutionary pathways leading to the observed diversity of GOs with confidence.
最近的线粒体基因组研究揭示了扁形动物门新皮类中的两个纲、四个目和 31 个种之间共享的基因顺序(GO)(“共同 GO”)。对于这种现象,有两种可能的假说:趋同进化(同型性)或共同祖先(原始同型性)。为了检验这些假说,我们对所有可用的线粒体基因组进行了荟萃分析,以推断新皮类中 GO 的进化历史。为了提高分辨率,我们将一个新测序的线粒体基因组添加到数据集,该基因组表现出共同 GO,Euryhaliotrema johni(Ancyrocephalinae)。基于两个数据集(36 个基因的所有核苷酸和 12 个蛋白质编码基因的氨基酸序列)和四个算法(MrBayes、RAxML、IQ-TREE 和 PhyloBayes)进行的系统发育分析,在 tips 处产生了拓扑不稳定,因此使用 TreeREx 和 MLGO 程序使用所有获得的 8 个拓扑结构,以及来自之前研究的三个独特拓扑结构,进行了祖先 GO 重建。结果一致支持第二个假说,将共同 GO 解析为新皮类、绦虫、单殖吸虫、绦虫+吸虫和绦虫+吸虫+单殖吸虫的原始祖先 GO。这使得我们能够从每个共同祖先追溯到单殖吸虫和绦虫类中的共同祖先的后代的进化 GO 情景,并提出共同 GO 很可能在所有共同祖先中保留,导致现存物种具有共同 GO。从 GO 推断的新皮类系统发育与上述 11 个拓扑结构中的大多数都不一致,但它确实支持线粒体基因组数据集解决多毛类作为最早的新皮类分支。尽管高度衍生的 GO 可能有助于解决孤立的分类和系统发育不确定性,但我们得出结论,由于它们的进化具有不连续性,它们往往会产生人为的系统发育关系,因此不适合在新皮类中进行系统发育重建。需要对新皮类的线粒体基因组序列进行更广泛和更密集的采样,才能有信心推断出导致观察到的 GO 多样性的进化途径。