Department of Medicine, Division of Cardiology, University of California, San Diego, La Jolla, CA 92093, USA.
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
Dev Cell. 2019 Sep 23;50(6):729-743.e5. doi: 10.1016/j.devcel.2019.07.014. Epub 2019 Aug 8.
Pacemaker cardiomyocytes that create the sinoatrial node are essential for the initiation and maintenance of proper heart rhythm. However, illuminating developmental cues that direct their differentiation has remained particularly challenging due to the unclear cellular origins of these specialized cardiomyocytes. By discovering the origins of pacemaker cardiomyocytes, we reveal an evolutionarily conserved Wnt signaling mechanism that coordinates gene regulatory changes directing mesoderm cell fate decisions, which lead to the differentiation of pacemaker cardiomyocytes. We show that in zebrafish, pacemaker cardiomyocytes derive from a subset of Nkx2.5+ mesoderm that responds to canonical Wnt5b signaling to initiate the cardiac pacemaker program, including activation of pacemaker cell differentiation transcription factors Isl1 and Tbx18 and silencing of Nkx2.5. Moreover, applying these developmental findings to human pluripotent stem cells (hPSCs) notably results in the creation of hPSC-pacemaker cardiomyocytes, which successfully pace three-dimensional bioprinted hPSC-cardiomyocytes, thus providing potential strategies for biological cardiac pacemaker therapy.
窦房结起搏细胞对于心脏正常节律的启动和维持至关重要。然而,由于这些特化的心肌细胞的细胞起源尚不明确,阐明指导其分化的发育线索一直极具挑战性。通过发现起搏细胞的起源,我们揭示了一个进化上保守的 Wnt 信号机制,该机制协调了基因调控变化,指导中胚层细胞命运决定,从而导致起搏细胞的分化。我们表明,在斑马鱼中,起搏细胞源自一组对经典 Wnt5b 信号有反应的 Nkx2.5+中胚层,以启动心脏起搏程序,包括起搏细胞分化转录因子 Isl1 和 Tbx18 的激活以及 Nkx2.5 的沉默。此外,将这些发育发现应用于人类多能干细胞(hPSC),显著导致 hPSC-起搏细胞的产生,其成功起搏三维生物打印的 hPSC-心肌细胞,从而为生物心脏起搏器治疗提供了潜在策略。