Suppr超能文献

使用时变协变量效应建模长期移植肾存活:南非约翰内斯堡一家单中心肾移植的应用

Modeling Long-Term Graft Survival With Time-Varying Covariate Effects: An Application to a Single Kidney Transplant Centre in Johannesburg, South Africa.

作者信息

Achilonu Okechinyere J, Fabian June, Musenge Eustasius

机构信息

Division of Biostatistics and Epidemiology, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Wits Donald Gordon Medical Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

出版信息

Front Public Health. 2019 Jul 25;7:201. doi: 10.3389/fpubh.2019.00201. eCollection 2019.

Abstract

Patients' characteristics that could influence graft survival may also exhibit non-constant effects over time; therefore, violating the important assumption of the Cox proportional hazard (PH) model. We describe the effects of covariates on the hazard of graft failure in the presence of long follow-ups. We studied 915 adult patients that received kidney transplant between 1984 and 2000, using Cox PH, a variation of the Aalen additive hazard and Accelerated failure time (AFT) models. Selection of important predictors was based on the purposeful method of variable selection. Out of 915 patients under study, 43% had graft failure by the end of the study. The graft survival rate is 81, 66, and 50% at 1, 5, and 10 years, respectively. Our models indicate that donor type, recipient age, donor-recipient gender match, delayed graft function, diabetes and recipient ethnicity are significant predictors of graft survival. However, only the recipient age and donor-recipient gender match exhibit constant effects in the models. Conclusion made about predictors of graft survival in the Cox PH model without adequate assessment of the model fit could over-estimate significant effects. The additive hazard and AFT models offer more flexibility in understanding covariates with non-constant effects on graft survival. Our results suggest that the period of follow-up in this study is long to support the proportionality assumption. Modeling graft survival at different time points may restrain the possibility of important covariates showing time-variant effects in the Cox PH model.

摘要

可能影响移植物存活的患者特征也可能随时间呈现非恒定效应;因此,违反了Cox比例风险(PH)模型的重要假设。我们描述了在长期随访情况下协变量对移植物失功风险的影响。我们研究了1984年至2000年间接受肾移植的915例成年患者,使用Cox PH模型、Aalen相加风险模型的一种变体以及加速失效时间(AFT)模型。重要预测因素的选择基于有目的的变量选择方法。在915例研究患者中,43%在研究结束时出现移植物失功。移植物1年、5年和10年的存活率分别为81%、66%和50%。我们的模型表明,供体类型、受者年龄、供受者性别匹配、移植肾功能延迟、糖尿病和受者种族是移植物存活的重要预测因素。然而,在模型中只有受者年龄和供受者性别匹配呈现恒定效应。在未充分评估模型拟合度的情况下,Cox PH模型中关于移植物存活预测因素的结论可能会高估显著效应。相加风险模型和AFT模型在理解对移植物存活有非恒定效应的协变量方面提供了更大的灵活性。我们的结果表明,本研究的随访期足够长,足以支持比例性假设。在不同时间点对移植物存活进行建模可能会抑制Cox PH模型中重要协变量出现随时间变化效应的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88fb/6669915/5e1803f2e2bf/fpubh-07-00201-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验