Selker Harry P, Kwong Manlik, Ruthazer Robin, Gorman Sheeona, Green Giuliana, Patchen Elizabeth, Udelson James E, Smithline Howard A, Baumann Michael R, Harris Paul A, Shah Rashmee U, Nelson Sarah J, Cohen Theodora, Jones Elizabeth B, Barnewolt Brien A, Williams Andrew E
Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts, USA.
Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA.
J Clin Transl Sci. 2018 Dec;2(6):377-383. doi: 10.1017/cts.2019.365.
To identify potential participants for clinical trials, electronic health records (EHRs) are searched at potential sites. As an alternative, we investigated using medical devices used for real-time diagnostic decisions for trial enrollment.
To project cohorts for a trial in acute coronary syndromes (ACS), we used electrocardiograph-based algorithms that identify ACS or ST elevation myocardial infarction (STEMI) that prompt clinicians to offer patients trial enrollment. We searched six hospitals' electrocardiograph systems for electrocardiograms (ECGs) meeting the planned trial's enrollment criterion: ECGs with STEMI or > 75% probability of ACS by the acute cardiac ischemia time-insensitive predictive instrument (ACI-TIPI). We revised the ACI-TIPI regression to require only data directly from the electrocardiograph, the e-ACI-TIPI using the same data used for the original ACI-TIPI (development set = 3,453; test set = 2,315). We also tested both on data from emergency department electrocardiographs from across the US ( = 8,556). We then used ACI-TIPI and e-ACI-TIPI to identify potential cohorts for the ACS trial and compared performance to cohorts from EHR data at the hospitals.
Receiver-operating characteristic (ROC) curve areas on the test set were excellent, 0.89 for ACI-TIPI and 0.84 for the e-ACI-TIPI, as was calibration. On the national electrocardiographic database, ROC areas were 0.78 and 0.69, respectively, and with very good calibration. When tested for detection of patients with > 75% ACS probability, both electrocardiograph-based methods identified eligible patients well, and better than did EHRs.
Using data from medical devices such as electrocardiographs may provide accurate projections of available cohorts for clinical trials.
为了确定临床试验的潜在参与者,会在潜在地点搜索电子健康记录(EHR)。作为一种替代方法,我们研究了使用用于实时诊断决策的医疗设备来进行试验入组。
为了预测急性冠状动脉综合征(ACS)试验的队列,我们使用了基于心电图的算法来识别ACS或ST段抬高型心肌梗死(STEMI),这些算法会促使临床医生为患者提供试验入组机会。我们在六家医院的心电图系统中搜索符合计划试验入组标准的心电图:根据急性心脏缺血时间不敏感预测工具(ACI-TIPI),STEMI或ACS概率>75%的心电图。我们对ACI-TIPI回归进行了修订,使其仅需要直接来自心电图的数据,即使用与原始ACI-TIPI相同数据的电子ACI-TIPI(开发集=3453;测试集=2315)。我们还在美国各地急诊科心电图数据(=8556)上对两者进行了测试。然后,我们使用ACI-TIPI和电子ACI-TIPI来识别ACS试验的潜在队列,并将其性能与医院EHR数据中的队列进行比较。
测试集上的受试者操作特征(ROC)曲线面积很出色,ACI-TIPI为0.89,电子ACI-TIPI为0.84,校准情况也是如此。在全国心电图数据库上,ROC面积分别为0.78和0.69,校准情况非常好。当测试检测ACS概率>75%的患者时,两种基于心电图的方法都能很好地识别符合条件的患者,并且比EHR更好。
使用心电图等医疗设备的数据可以为临床试验提供可用队列的准确预测。