Institute for Clinical Research and Health Policy Studies, Tufts Medical Center and Tufts University School of Medicine, Tufts Clinical and Translational Science Institute, Tufts University, Boston, Massachusetts, USA.
Clin Transl Sci. 2011 Feb;4(1):10-6. doi: 10.1111/j.1752-8062.2010.00253.x.
In controlled clinical trials, random assignment of treatment is appropriate only when there is equipoise, that is, no clear preference among treatment options. However, even when equipoise appears absent because prior trials show, on average, one treatment yields superior outcomes, random assignment still may be appropriate for some patients and circumstances. In such cases, enrollment into trials may be assisted by real-time patient-specific predictions of treatment outcomes, to determine whether there is equipoise to justify randomization. The percutaneous coronary intervention thrombolytic predictive instrument (PCI-TPI) computes probabilities of 30-day mortality for patients having ST elevation myocardial infarction (STEMI), if treated with thrombolytic therapy (TT), and if treated with PCI. We estimated uncertainty around differences in their respective predicted benefits using the estimated uncertainty of the model coefficients. Using the 2,781-patient PCI-TPI development dataset, we evaluated the distribution of predicted benefits for each patient. For three typical clinical situations, randomization was potentially warranted for 70%, 93%, and 80% of patients. Predictive models may allow real-time patient-specific determination of whether there is equipoise that justifies trial enrollment for a given patient. This approach may have utility for comparative effectiveness trials and for application of trial results to clinical practice.
在对照临床试验中,仅当存在平衡状态,即治疗选择之间没有明显偏好时,才适合进行随机分组。然而,即使在先前的试验平均显示一种治疗方法产生更好的结果,导致平衡状态似乎不存在的情况下,随机分组对于某些患者和情况仍可能是合适的。在这种情况下,可以通过实时的患者特异性治疗结果预测来协助试验入组,以确定是否存在平衡状态以证明随机分组是合理的。经皮冠状动脉介入溶栓预测工具 (PCI-TPI) 计算了接受溶栓治疗 (TT) 和经皮冠状动脉介入治疗 (PCI) 的 ST 段抬高型心肌梗死 (STEMI) 患者 30 天死亡率的概率。我们使用模型系数的估计不确定性来估计它们各自预测收益的差异的不确定性。我们使用了 2781 名患者的 PCI-TPI 开发数据集,评估了每位患者的预测收益分布。对于三种典型的临床情况,随机分组对于 70%、93%和 80%的患者可能是合理的。预测模型可能允许实时的患者特异性确定是否存在平衡状态,以证明对于特定患者进行试验入组是合理的。这种方法可能对比较有效性试验和将试验结果应用于临床实践具有实用价值。