Henry Jason, Rodriguez Alvaro, Wlodkowic Donald
School of Science, RMIT University, Melbourne, VIC, Australia.
Biomedical Research Institute A Coruña (INIBIC), University Hospital Complex of A Coruña, Coruña, Spain.
PeerJ. 2019 Aug 5;7:e7367. doi: 10.7717/peerj.7367. eCollection 2019.
Chemobehavioural phenotypic analysis using small aquatic model organisms is becoming an important toolbox in aquatic ecotoxicology and neuroactive drug discovery. The analysis of the organisms' behavior is usually performed by combining digital video recording with animal tracking software. This software detects the organisms in the video frames, and reconstructs their movement trajectory using image processing algorithms. In this work we investigated the impact of video file characteristics, video optimization techniques and differences in animal tracking algorithms on the accuracy of quantitative neurobehavioural endpoints. We employed larval stages of a free-swimming euryhaline crustacean ,commonly used for marine ecotoxicity testing, as a proxy modelto assess the effects of video analytics on quantitative behavioural parameters. We evaluated parameters such as data processing speed, tracking precision, capability to perform high-throughput batch processing of video files. Using a model toxicant the software algorithms were also finally benchmarked against one another. Our data indicates that variability in video file parameters; such as resolution, frame rate, file containers types, codecs and compression levels, can be a source of experimental biases in behavioural analysis. Similarly, the variability in data outputs between different tracking algorithms should be taken into account when designing standardized behavioral experiments and conducting chemobehavioural phenotyping.
使用小型水生模式生物进行化学行为表型分析正成为水生生态毒理学和神经活性药物发现中的一个重要工具。对生物行为的分析通常通过将数字视频记录与动物跟踪软件相结合来进行。该软件在视频帧中检测生物,并使用图像处理算法重建它们的运动轨迹。在这项工作中,我们研究了视频文件特征、视频优化技术以及动物跟踪算法的差异对定量神经行为终点准确性的影响。我们使用一种常用于海洋生态毒性测试的自由游动广盐性甲壳类动物的幼体阶段,作为一个替代模型来评估视频分析对定量行为参数的影响。我们评估了诸如数据处理速度、跟踪精度、对视频文件进行高通量批量处理的能力等参数。使用一种模型毒物,最终还对软件算法进行了相互比较。我们的数据表明,视频文件参数的变异性,如分辨率、帧率、文件容器类型、编解码器和压缩级别,可能是行为分析中实验偏差的一个来源。同样,在设计标准化行为实验和进行化学行为表型分析时,应考虑不同跟踪算法之间数据输出的变异性。