Suppr超能文献

基于反应的枚举、主动学习和自由能计算,快速探索合成上可处理的化学空间并优化细胞周期蛋白依赖性激酶 2 抑制剂的效力。

Reaction-Based Enumeration, Active Learning, and Free Energy Calculations To Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin-Dependent Kinase 2 Inhibitors.

机构信息

Schrödinger Inc. , 120 West 45th Street, 17th floor , New York , New York 10036 , United States.

出版信息

J Chem Inf Model. 2019 Sep 23;59(9):3782-3793. doi: 10.1021/acs.jcim.9b00367. Epub 2019 Aug 22.

Abstract

The hit-to-lead and lead optimization processes usually involve the design, synthesis, and profiling of thousands of analogs prior to clinical candidate nomination. A hit finding campaign may begin with a virtual screen that explores millions of compounds, if not more. However, this scale of computational profiling is not frequently performed in the hit-to-lead or lead optimization phases of drug discovery. This is likely due to the lack of appropriate computational tools to generate synthetically tractable lead-like compounds in silico, and a lack of computational methods to accurately profile compounds prospectively on a large scale. Recent advances in computational power and methods provide the ability to profile much larger libraries of ligands than previously possible. Herein, we report a new computational technique, referred to as "PathFinder", that uses retrosynthetic analysis followed by combinatorial synthesis to generate novel compounds in synthetically accessible chemical space. In this work, the integration of PathFinder-driven compound generation, cloud-based FEP simulations, and active learning are used to rapidly optimize R-groups, and generate new cores for inhibitors of cyclin-dependent kinase 2 (CDK2). Using this approach, we explored >300 000 ideas, performed >5000 FEP simulations, and identified >100 ligands with a predicted IC < 100 nM, including four unique cores. To our knowledge, this is the largest set of FEP calculations disclosed in the literature to date. The rapid turnaround time, and scale of chemical exploration, suggests that this is a useful approach to accelerate the discovery of novel chemical matter in drug discovery campaigns.

摘要

从苗头化合物发现到先导化合物优化的过程通常需要设计、合成并评估成千上万的类似物,然后才能提名临床候选化合物。苗头化合物发现可能始于虚拟筛选,探索数百万种化合物,如果不是更多的话。然而,在药物发现的苗头化合物发现或先导化合物优化阶段,通常不会进行这种规模的计算筛选。这可能是由于缺乏适当的计算工具来在计算机上生成具有合成可行性的先导样化合物,并且缺乏用于在大规模上准确地对化合物进行前瞻性分析的计算方法。最近在计算能力和方法方面的进展提供了在以前不可能的情况下对更大的配体文库进行分析的能力。在此,我们报告了一种新的计算技术,称为“PathFinder”,它使用逆合成分析和组合合成来在具有合成可行性的化学空间中生成新的化合物。在这项工作中,PathFinder 驱动的化合物生成、基于云的 FEP 模拟和主动学习的集成用于快速优化 R 基团,并为细胞周期蛋白依赖性激酶 2 (CDK2) 的抑制剂生成新的核心。使用这种方法,我们探索了>300,000 个想法,进行了>5000 次 FEP 模拟,并鉴定了>100 种预测 IC <100 nM 的配体,其中包括四个独特的核心。据我们所知,这是迄今为止文献中公开的最大规模的 FEP 计算。快速的周转时间和化学探索的规模表明,这是一种在药物发现活动中加速发现新型化学物质的有用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验