Suppr超能文献

PairMap:一种用于提高远距离化合物转化相对自由能扰动计算准确性的中间插入方法。

PairMap: An Intermediate Insertion Approach for Improving the Accuracy of Relative Free Energy Perturbation Calculations for Distant Compound Transformations.

作者信息

Furui Kairi, Shimizu Takafumi, Akiyama Yutaka, Kimura S Roy, Terada Yoh, Ohue Masahito

机构信息

Department of Computer Science, School of Computing, Institute of Science Tokyo, Yokohama 226-8501, Japan.

Alivexis, Inc., Tokyo 105-0004, Japan.

出版信息

J Chem Inf Model. 2025 Jan 27;65(2):705-721. doi: 10.1021/acs.jcim.4c01634. Epub 2025 Jan 12.

Abstract

Accurate prediction of the difference in binding free energy between compounds is crucial for reducing the high costs associated with drug discovery. Relative binding free energy perturbation (RBFEP) calculations are effective for small structural changes; however, large topological changes pose significant challenges for calculations, leading to high errors and difficulties in convergence. To address such issues, we propose a new approach─PairMap─that focuses on introducing appropriate intermediates for complex transformations between two input compounds. PairMap-generated intermediates exhaustively, determined the optimal conversion paths, and introduced thermodynamic cycles into the perturbation map to improve accuracy and reduce computational cost. PairMap succeeded in introducing appropriate intermediates that could not be discovered by existing simple approaches by comprehensively considering intermediates. Furthermore, we evaluated the accuracy of the prediction of binding free energy using 9 compounds selected from Wang et al.'s benchmark set, which included particularly complex transformations. The perturbation map generated by PairMap achieved excellent accuracy with a mean absolute error of 0.93 kcal/mol compared to 1.70 kcal/mol when using the perturbation map generated by the conventional Flare FEP intermediate introduction method. Moreover, in a scaffold hopping experiment conducted with the PDE5a target involving complex transformations, PairMap provided more accurate free energy predictions than ABFEP calculations, yielding more reliable results compared to experimental data. Additionally, PairMap can be utilized to introduce intermediates into congeneric series, demonstrating that complex links on the perturbation map can be resolved with minimal addition of intermediates and links. In conclusion, PairMap overcomes the limitations of existing methods by enabling RBFEP calculations for more complex transformations, further streamlining lead optimization in drug discovery.

摘要

准确预测化合物之间结合自由能的差异对于降低药物研发的高昂成本至关重要。相对结合自由能扰动(RBFEP)计算对于小的结构变化是有效的;然而,大的拓扑变化给计算带来了重大挑战,导致高误差和收敛困难。为了解决这些问题,我们提出了一种新方法——PairMap,该方法专注于为两种输入化合物之间的复杂转化引入合适的中间体。PairMap详尽地生成中间体,确定最佳转化路径,并将热力学循环引入扰动图以提高准确性并降低计算成本。通过全面考虑中间体,PairMap成功引入了现有简单方法无法发现的合适中间体。此外,我们使用从Wang等人的基准集中选择的9种化合物评估了结合自由能预测的准确性,其中包括特别复杂的转化。与使用传统的Flare FEP中间体引入方法生成的扰动图时的平均绝对误差1.70 kcal/mol相比,PairMap生成的扰动图实现了出色的准确性,平均绝对误差为0.93 kcal/mol。此外,在涉及复杂转化的PDE5a靶点的骨架跳跃实验中,PairMap提供了比ABFEP计算更准确的自由能预测,与实验数据相比产生了更可靠的结果。此外,PairMap可用于将中间体引入同系物系列,表明在扰动图上的复杂连接可以通过最少的中间体和连接添加来解决。总之,PairMap通过实现对更复杂转化的RBFEP计算克服了现有方法的局限性,进一步简化了药物研发中的先导优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08b1/11776053/614531ba7d03/ci4c01634_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验