Suppr超能文献

研究限制效应对固着在微柱结构上的液滴蒸发行为的影响。

Investigation of the confinement effect on the evaporation behavior of a droplet pinned on a micropillar structure.

机构信息

Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.

Google Inc. 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA.

出版信息

J Colloid Interface Sci. 2019 Nov 1;555:583-594. doi: 10.1016/j.jcis.2019.07.096. Epub 2019 Jul 30.

Abstract

Evaporation of sessile droplet suffers from reduced evaporation rate due to the confinement of vapor diffusion imposed by the bottom substrate. However, it is possible to change the evaporation behavior of a droplet by suspending it from the bottom substrate, in particular, supporting the droplet on a micropillar. This is expected to enable diffusion transport in the downward direction that will subsequently enhance evaporative transport. In this study, we investigate the diffusion confinement effect imposed by the bottom substrate and the side wall of the micropillar through numerical simulations and experimental investigation. The approximate solutions for total evaporation rate and local evaporative flux were subsequently derived from the total evaporation rate predicted by the simulation results. The simulation results, agreeing within 5% with the experimental measurements, show that increasing the micropillar height enhances the total evaporation rate from the suspended hemispherical droplet. This enhancement is due to a dramatic improvement of the local evaporation rate near the contact line region as micropillar heights increase. The micropillar heights examined for maximum evaporation rates were observed under substrate temperatures from 60-98 °C. The increasing pillar height leads to smaller vapor diffusion resistance but greater conduction resistance.

摘要

固着液滴的蒸发由于底部衬底限制了蒸汽扩散而导致蒸发速率降低。然而,通过将液滴悬挂在底部衬底上,特别是将液滴支撑在微柱上,可以改变液滴的蒸发行为。这有望实现向下的扩散输运,从而增强蒸发输运。在这项研究中,我们通过数值模拟和实验研究研究了底部衬底和微柱侧壁施加的扩散限制效应。随后从模拟结果预测的总蒸发率中推导出总蒸发率和局部蒸发通量的近似解。模拟结果与实验测量值的偏差在 5%以内,表明增加微柱高度会提高悬浮半球形液滴的总蒸发率。这种增强是由于随着微柱高度的增加,接触线区域附近的局部蒸发率显著提高。在 60-98°C 的衬底温度下观察到最大蒸发率的微柱高度。增加的支柱高度导致较小的蒸汽扩散阻力但较大的传导阻力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验