Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany. Author to whom any correspondence should be addressed.
Phys Med Biol. 2019 Sep 17;64(18):18NT02. doi: 10.1088/1361-6560/ab3a5a.
Tracer-kinetic analysis of dynamic contrast-enhanced magnetic resonance imaging data is commonly performed with the well-known Tofts model and nonlinear least squares (NLLS) regression. This approach yields point estimates of model parameters, uncertainty of these estimates can be assessed e.g. by an additional bootstrapping analysis. Here, we present a Bayesian probabilistic modeling approach for tracer-kinetic analysis with a Tofts model, which yields posterior probability distributions of perfusion parameters and therefore promises a robust and information-enriched alternative based on a framework of probability distributions. In this manuscript, we use the quantitative imaging biomarkers alliance (QIBA) Tofts phantom to evaluate the Bayesian tofts model (BTM) against a bootstrapped NLLS approach. Furthermore, we demonstrate how Bayesian posterior probability distributions can be employed to assess treatment response in a breast cancer DCE-MRI dataset using Cohen's d. Accuracy and precision of the BTM posterior distributions were validated and found to be in good agreement with the NLLS approaches, and assessment of therapy response with respect to uncertainty in parameter estimates was found to be excellent. In conclusion, the Bayesian modeling approach provides an elegant means to determine uncertainty via posterior distributions within a single step and provides honest information about changes in parameter estimates.
动态对比增强磁共振成像(DCE-MRI)数据的示踪动力学分析通常采用著名的 Tofts 模型和非线性最小二乘法(NLLS)回归。该方法可获得模型参数的点估计,可通过额外的自举分析来评估这些估计的不确定性。在这里,我们提出了一种基于 Tofts 模型的示踪动力学分析的贝叶斯概率建模方法,该方法可获得灌注参数的后验概率分布,因此有望基于概率分布框架提供稳健且信息丰富的替代方法。在本文中,我们使用定量成像生物标志物联盟(QIBA)Tofts 体模来评估贝叶斯 Tofts 模型(BTM)与自举 NLLS 方法的对比。此外,我们还展示了如何使用 Cohen's d 在乳腺癌 DCE-MRI 数据集上使用贝叶斯后验概率分布来评估治疗反应。BTM 后验分布的准确性和精度得到了验证,并且与 NLLS 方法一致,并且发现评估治疗反应时,参数估计的不确定性非常出色。总之,贝叶斯建模方法提供了一种通过单个步骤内的后验分布来确定不确定性的优雅方法,并提供了关于参数估计变化的真实信息。